Value and choice as separable and stable representations in orbitofrontal cortex.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
10 07 2020
10 07 2020
Historique:
received:
09
02
2020
accepted:
10
06
2020
entrez:
12
7
2020
pubmed:
12
7
2020
medline:
1
9
2020
Statut:
epublish
Résumé
Value-based decision-making requires different variables-including offer value, choice, expected outcome, and recent history-at different times in the decision process. Orbitofrontal cortex (OFC) is implicated in value-based decision-making, but it is unclear how downstream circuits read out complex OFC responses into separate representations of the relevant variables to support distinct functions at specific times. We recorded from single OFC neurons while macaque monkeys made cost-benefit decisions. Using a novel analysis, we find separable neural dimensions that selectively represent the value, choice, and expected reward of the present and previous offers. The representations are generally stable during periods of behavioral relevance, then transition abruptly at key task events and between trials. Applying new statistical methods, we show that the sensitivity, specificity and stability of the representations are greater than expected from the population's low-level features-dimensionality and temporal smoothness-alone. The separability and stability suggest a mechanism-linear summation over static synaptic weights-by which downstream circuits can select for specific variables at specific times.
Identifiants
pubmed: 32651373
doi: 10.1038/s41467-020-17058-y
pii: 10.1038/s41467-020-17058-y
pmc: PMC7351792
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
3466Subventions
Organisme : Howard Hughes Medical Institute
Pays : United States
Références
Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11969-74
pubmed: 18689686
Nat Rev Neurosci. 2017 Feb 17;18(3):172-182
pubmed: 28209978
Nature. 2012 Mar 14;484(7392):62-8
pubmed: 22419153
Neural Comput. 2015 Jul;27(7):1461-95
pubmed: 25973548
J Neurophysiol. 2018 Apr 1;119(4):1305-1318
pubmed: 29212924
Neuron. 2010 May 13;66(3):449-60
pubmed: 20471357
Neuron. 2013 Dec 4;80(5):1322-36
pubmed: 24314733
Nat Commun. 2017 Mar 24;8:14823
pubmed: 28337990
Nature. 2019 Dec;576(7787):446-451
pubmed: 31801999
J Neurosci. 2009 Jun 3;29(22):7278-89
pubmed: 19494150
Nat Neurosci. 2016 Jul;19(7):973-80
pubmed: 27273768
Nat Neurosci. 2017 Sep;20(9):1310-1318
pubmed: 28783140
J Comp Neurol. 1994 Aug 15;346(3):366-402
pubmed: 7527805
J Neurosci. 2014 Jan 8;34(2):646-55
pubmed: 24403162
J Neurosci. 2008 May 28;28(22):5623-30
pubmed: 18509023
Neuron. 2014 Jan 22;81(2):267-279
pubmed: 24462094
Elife. 2016 Apr 12;5:
pubmed: 27067378
Nat Rev Neurosci. 2009 Dec;10(12):885-92
pubmed: 19904278
Science. 2004 Apr 9;304(5668):307-10
pubmed: 15073380
J Pers Soc Psychol. 1973 Nov;28(2):172-9
pubmed: 4747220
Curr Biol. 2014 Jul 7;24(13):1542-7
pubmed: 24954050
Nat Neurosci. 2016 Jun;19(6):855-61
pubmed: 27159800
Neuron. 2014 Jun 18;82(6):1357-66
pubmed: 24881835
Ann N Y Acad Sci. 2011 Dec;1239:14-24
pubmed: 22145871
Elife. 2016 Sep 16;5:
pubmed: 27636864
Neuron. 2009 Apr 30;62(2):269-80
pubmed: 19409271
Nat Neurosci. 2014 Dec;17(12):1784-1792
pubmed: 25383902
Nature. 1999 Apr 22;398(6729):704-8
pubmed: 10227292
Nat Neurosci. 2011 Oct 30;14(12):1590-7
pubmed: 22037501
Neural Comput. 2013 Mar;25(3):626-49
pubmed: 23272922
Trends Cogn Sci. 2008 Nov;12(11):418-24
pubmed: 18799345
Nat Neurosci. 2015 May;18(5):620-7
pubmed: 25919962
Neuron. 2016 Sep 21;91(6):1402-1412
pubmed: 27657452
Neuron. 2017 Dec 6;96(5):1192-1203.e4
pubmed: 29154127
Am J Psychol. 1987 Fall-Winter;100(3-4):441-71
pubmed: 3322052
Front Behav Neurosci. 2012 Aug 14;6:49
pubmed: 22912608
Curr Top Behav Neurosci. 2016;27:199-230
pubmed: 26276036
Elife. 2018 Oct 03;7:
pubmed: 30281020
Nature. 2013 Nov 7;503(7474):78-84
pubmed: 24201281
Nature. 2017 Aug 3;548(7665):92-96
pubmed: 28723889
Curr Opin Neurobiol. 2016 Apr;37:66-74
pubmed: 26851755
Nat Rev Neurosci. 2016 Aug;17(8):513-23
pubmed: 27256552
J Neurosci. 2009 Sep 16;29(37):11471-83
pubmed: 19759296
Elife. 2015 May 05;4:e04677
pubmed: 25942352
Neuron. 2014 Jun 4;82(5):950-65
pubmed: 24908481
J Neurophysiol. 2015 Oct;114(4):2439-49
pubmed: 26334016
Science. 2012 Nov 16;338(6109):953-6
pubmed: 23162000
Nat Commun. 2016 Oct 27;7:13239
pubmed: 27807345
Neuron. 2013 Apr 24;78(2):364-75
pubmed: 23562541
J Cogn Neurosci. 2009 Jun;21(6):1162-78
pubmed: 18752411
Nature. 2012 Jul 5;487(7405):51-6
pubmed: 22722855
Neuron. 2008 Jul 10;59(1):161-72
pubmed: 18614037
Nature. 2013 May 30;497(7451):585-90
pubmed: 23685452
Network. 1998 Nov;9(4):R53-78
pubmed: 10221571
PLoS Comput Biol. 2019 Oct 14;15(10):e1006667
pubmed: 31609973
Curr Opin Neurobiol. 2010 Apr;20(2):262-70
pubmed: 20338744
Neuron. 2016 Jun 15;90(6):1299-1311
pubmed: 27263972
Nature. 2006 May 11;441(7090):223-6
pubmed: 16633341
Nat Neurosci. 2016 Dec;19(12):1672-1681
pubmed: 27694990
J Neurosci. 2008 Dec 17;28(51):13775-85
pubmed: 19091968
Annu Rev Neurosci. 2011;34:333-59
pubmed: 21456961
Nat Neurosci. 2014 Mar;17(3):440-8
pubmed: 24487233
Science. 2013 Apr 5;340(6128):95-8
pubmed: 23559254
Proc Natl Acad Sci U S A. 2017 Jan 10;114(2):394-399
pubmed: 28028221