Synucleinopathy alters nanoscale organization and diffusion in the brain extracellular space through hyaluronan remodeling.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
10 07 2020
10 07 2020
Historique:
received:
11
06
2019
accepted:
18
06
2020
entrez:
12
7
2020
pubmed:
12
7
2020
medline:
1
9
2020
Statut:
epublish
Résumé
In recent years, exploration of the brain extracellular space (ECS) has made remarkable progress, including nanoscopic characterizations. However, whether ECS precise conformation is altered during brain pathology remains unknown. Here we study the nanoscale organization of pathological ECS in adult mice under degenerative conditions. Using electron microscopy in cryofixed tissue and single nanotube tracking in live brain slices combined with super-resolution imaging analysis, we find enlarged ECS dimensions and increased nanoscale diffusion after α-synuclein-induced neurodegeneration. These animals display a degraded hyaluronan matrix in areas close to reactive microglia. Furthermore, experimental hyaluronan depletion in vivo reduces dopaminergic cell loss and α-synuclein load, induces microgliosis and increases ECS diffusivity, highlighting hyaluronan as diffusional barrier and local tissue organizer. These findings demonstrate the interplay of ECS, extracellular matrix and glia in pathology, unraveling ECS features relevant for the α-synuclein propagation hypothesis and suggesting matrix manipulation as a disease-modifying strategy.
Identifiants
pubmed: 32651387
doi: 10.1038/s41467-020-17328-9
pii: 10.1038/s41467-020-17328-9
pmc: PMC7351768
doi:
Substances chimiques
Hyaluronic Acid
9004-61-9
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3440Références
Syková, E. & Nicholson, C. Diffusion in brain extracellular space. Physiol. Rev. 88, 1277–1340 (2008).
pubmed: 18923183
doi: 10.1152/physrev.00027.2007
Godin, A. G. et al. Single-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain. Nat. Nanotechnol. 12, 238–243 (2017).
pubmed: 27870840
doi: 10.1038/nnano.2016.248
Zheng, K. et al. Nanoscale diffusion in the synaptic cleft and beyond measured with time-resolved fluorescence anisotropy imaging. Sci. Rep. 7, 42022 (2017).
pubmed: 28181535
pmcid: 5299514
doi: 10.1038/srep42022
Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci. Transl. Med 4, 147ra111 (2012).
pubmed: 22896675
pmcid: 3551275
doi: 10.1126/scitranslmed.3003748
Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342, 373–377 (2013).
pubmed: 24136970
doi: 10.1126/science.1241224
Holter, K. E. et al. Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow. Proc. Natl Acad. Sci. USA 114, 9894–9899 (2017).
pubmed: 28847942
doi: 10.1073/pnas.1706942114
pmcid: 5604020
Nicholson, C. & Hrabetova, S. Brain extracellular space: the final frontier of neuroscience. Biophys. J. 113, 2133–2142 (2017).
pubmed: 28755756
pmcid: 5700249
doi: 10.1016/j.bpj.2017.06.052
Dityatev, A., Schachner, M. & Sonderegger, P. The dual role of the extracellular matrix in synaptic plasticity and homeostasis. Nat. Rev. Neurosci. 11, 735–746 (2010).
pubmed: 20944663
doi: 10.1038/nrn2898
Ruoslahti, E. Brain extracellular matrix. Glycobiology 6, 489–492 (1996).
pubmed: 8877368
doi: 10.1093/glycob/6.5.489
Jiang, D., Liang, J. & Noble, P. W. Hyaluronan as an immune regulator in human diseases. Physiol. Rev. 91, 221–264 (2011).
pubmed: 21248167
doi: 10.1152/physrev.00052.2009
Gaudet, A. D. & Popovich, P. G. Extracellular matrix regulation of inflammation in the healthy and injured spinal cord. Exp. Neurol. 258, 24–34 (2014).
pubmed: 25017885
doi: 10.1016/j.expneurol.2013.11.020
Lau, L. W., Cua, R., Keough, M. B., Haylock-Jacobs, S. & Yong, V. W. Pathophysiology of the brain extracellular matrix: a new target for remyelination. Nat. Rev. Neurosci. 14, 722–729 (2013).
pubmed: 23985834
doi: 10.1038/nrn3550
Bonneh-Barkay, D. & Wiley, C. A. Brain extracellular matrix in neurodegeneration. Brain Pathol. 19, 573–585 (2009).
pubmed: 18662234
doi: 10.1111/j.1750-3639.2008.00195.x
Hrabetova, S., Cognet, L., Rusakov, D. A. & Nagerl, U. V. Unveiling the extracellular space of the brain: from super-resolved microstructure to in vivo function. J. Neurosci. 38, 9355–9363 (2018).
pubmed: 30381427
pmcid: 6706003
doi: 10.1523/JNEUROSCI.1664-18.2018
Vanharreveld, A., Crowell, J. & Malhotra, S. K. A study of extracellular space in central nervous tissue by freeze-substitution. J. Cell Biol. 25, 117–137 (1965).
pubmed: 14283623
doi: 10.1083/jcb.25.1.117
Ohno, N., Terada, N., Saitoh, S. & Ohno, S. Extracellular space in mouse cerebellar cortex revealed by in vivo cryotechnique. J. Comp. Neurol. 505, 292–301 (2007).
pubmed: 17879272
doi: 10.1002/cne.21498
Korogod, N., Petersen, C. C. & Knott, G. W. Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation. Elife 4 e05793 (2015).
Tønnesen, J., Inavalli, V. & Nägerl, U. V. Super-resolution imaging of the extracellular space in living brain tissue. Cell 172, 1108–1121 e1115 (2018).
pubmed: 29474910
doi: 10.1016/j.cell.2018.02.007
Paviolo, C. et al. Nanoscale exploration of the extracellular space in the live brain by combining single carbon nanotube tracking and super-resolution imaging analysis. Methods 174, 91–99 (2020).
pubmed: 30862507
doi: 10.1016/j.ymeth.2019.03.005
Recasens, A. et al. Lewy body extracts from Parkinson disease brains trigger alpha-synuclein pathology and neurodegeneration in mice and monkeys. Ann. Neurol. 75, 351–362 (2014).
pubmed: 24243558
doi: 10.1002/ana.24066
Bourdenx, M. et al. Identification of distinct pathological signatures induced by patient-derived alpha-synuclein structures in nonhuman primates. Sci. Adv. 6, eaaz9165 (2020).
pubmed: 32426502
pmcid: 7220339
doi: 10.1126/sciadv.aaz9165
Cragg, B. Preservation of extracellular space during fixation of the brain for electron microscopy. Tissue Cell 12, 63–72 (1980).
pubmed: 6987773
doi: 10.1016/0040-8166(80)90052-X
Pallotto, M., Watkins, P. V., Fubara, B., Singer, J. H. & Briggman, K. L. Extracellular space preservation aids the connectomic analysis of neural circuits. Elife 4, e08206 (2015).
Syková, E. Extrasynaptic volume transmission and diffusion parameters of the extracellular space. Neuroscience 129, 861–876 (2004).
pubmed: 15561404
doi: 10.1016/j.neuroscience.2004.06.077
Nicholson, C. & Syková, E. Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 21, 207–215 (1998).
pubmed: 9610885
doi: 10.1016/S0166-2236(98)01261-2
Deepa, S. S. et al. Composition of perineuronal net extracellular matrix in rat brain: a different disaccharide composition for the net-associated proteoglycans. J. Biol. Chem. 281, 17789–17800 (2006).
pubmed: 16644727
doi: 10.1074/jbc.M600544200
Vargová, L. & Syková, E. Astrocytes and extracellular matrix in extrasynaptic volume transmission. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130608 (2014).
pubmed: 25225101
pmcid: 4173293
doi: 10.1098/rstb.2013.0608
de la Motte, C. A. & Drazba, J. A. Viewing hyaluronan: imaging contributes to imagining new roles for this amazing matrix polymer. J. Histochem Cytochem. 59, 252–257 (2011).
pubmed: 21378279
pmcid: 3201155
doi: 10.1369/0022155410397760
Arranz, A. M. et al. Hyaluronan deficiency due to Has3 knock-out causes altered neuronal activity and seizures via reduction in brain extracellular space. J. Neurosci. 34, 6164–6176 (2014).
pubmed: 24790187
pmcid: 4004806
doi: 10.1523/JNEUROSCI.3458-13.2014
Kochlamazashvili, G. et al. The extracellular matrix molecule hyaluronic acid regulates hippocampal synaptic plasticity by modulating postsynaptic L-type Ca(2+) channels. Neuron 67, 116–128 (2010).
pubmed: 20624596
pmcid: 3378029
doi: 10.1016/j.neuron.2010.05.030
Morawski, M. et al. Involvement of perineuronal and perisynaptic extracellular matrix in Alzheimer’s disease neuropathology. Brain Pathol. 22, 547–561 (2012).
pubmed: 22126211
pmcid: 3639011
doi: 10.1111/j.1750-3639.2011.00557.x
Richter, R. P., Baranova, N. S., Day, A. J. & Kwok, J. C. Glycosaminoglycans in extracellular matrix organisation: are concepts from soft matter physics key to understanding the formation of perineuronal nets? Curr. Opin. Struct. Biol. 50, 65–74 (2018).
pubmed: 29275227
doi: 10.1016/j.sbi.2017.12.002
Fernandez, E. & Jelinek, H. F. Use of fractal theory in neuroscience: methods, advantages, and potential problems. Methods 24, 309–321 (2001).
pubmed: 11465996
doi: 10.1006/meth.2001.1201
Racine, R. & Mummert, M. E. In Molecular Regulation of Endocytosis (ed. Ceresa, B.) (IntechOpen, 2012).
Dzwonek, J. & Wilczynski, G. M. CD44: molecular interactions, signaling and functions in the nervous system. Front Cell Neurosci. 9, 175 (2015).
pubmed: 25999819
pmcid: 4423434
doi: 10.3389/fncel.2015.00175
Joers, V., Tansey, M. G., Mulas, G. & Carta, A. R. Microglial phenotypes in Parkinson’s disease and animal models of the disease. Prog. Neurobiol. 155, 57–75 (2017).
pubmed: 27107797
doi: 10.1016/j.pneurobio.2016.04.006
De Biase, L. M. et al. Local cues establish and maintain region-specific phenotypes of basal ganglia microglia. Neuron 95, 341–356.e346 (2017).
pubmed: 28689984
pmcid: 5754189
doi: 10.1016/j.neuron.2017.06.020
Tona, A. & Bignami, A. Effect of hyaluronidase on brain extracellular matrix in vivo and optic nerve regeneration. J. Neurosci. Res. 36, 191–199 (1993).
pubmed: 7505341
doi: 10.1002/jnr.490360209
Cserép, C. et al. Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science 367, 528–537 (2020).
pubmed: 31831638
doi: 10.1126/science.aax6752
Nagy, N. et al. 4-methylumbelliferone treatment and hyaluronan inhibition as a therapeutic strategy in inflammation, autoimmunity, and cancer. Front Immunol. 6, 123 (2015).
pubmed: 25852691
pmcid: 4369655
Kinney, J. P. et al. Extracellular sheets and tunnels modulate glutamate diffusion in hippocampal neuropil. J. Comp. Neurol. 521, 448–464 (2013).
pubmed: 22740128
pmcid: 3540825
doi: 10.1002/cne.23181
Cragg, S. J., Nicholson, C., Kume-Kick, J., Tao, L. & Rice, M. E. Dopamine-mediated volume transmission in midbrain is regulated by distinct extracellular geometry and uptake. J. Neurophysiol. 85, 1761–1771 (2001).
pubmed: 11287497
doi: 10.1152/jn.2001.85.4.1761
Turkowyd, B., Virant, D. & Endesfelder, U. From single molecules to life: microscopy at the nanoscale. Anal. Bioanal. Chem. 408, 6885–6911 (2016).
pubmed: 27613013
pmcid: 5566169
doi: 10.1007/s00216-016-9781-8
Rusakov, D. A. & Kullmann, D. M. Geometric and viscous components of the tortuosity of the extracellular space in the brain. Proc. Natl Acad. Sci. USA 95, 8975–8980 (1998).
pubmed: 9671789
doi: 10.1073/pnas.95.15.8975
pmcid: 21187
Thorne, R. G., Lakkaraju, A., Rodriguez-Boulan, E. & Nicholson, C. In vivo diffusion of lactoferrin in brain extracellular space is regulated by interactions with heparan sulfate. Proc. Natl Acad. Sci. USA 105, 8416–8421 (2008).
pubmed: 18541909
doi: 10.1073/pnas.0711345105
pmcid: 2448851
Toole, B. P. Hyaluronan: from extracellular glue to pericellular cue. Nat. Rev. Cancer 4, 528–539 (2004).
pubmed: 15229478
doi: 10.1038/nrc1391
Fieber, C. et al. Hyaluronan-oligosaccharide-induced transcription of metalloproteases. J. Cell Sci. 117, 359–367 (2004).
pubmed: 14657275
doi: 10.1242/jcs.00831
Knudson, W., Chow, G. & Knudson, C. B. CD44-mediated uptake and degradation of hyaluronan. Matrix Biol. 21, 15–23 (2002).
pubmed: 11827788
doi: 10.1016/S0945-053X(01)00186-X
Soltes, L. et al. Degradative action of reactive oxygen species on hyaluronan. Biomacromolecules 7, 659–668 (2006).
pubmed: 16529395
doi: 10.1021/bm050867v
Dehay, B., Vila, M., Bezard, E., Brundin, P. & Kordower, J. H. Alpha-synuclein propagation: New insights from animal models. Mov. Disord. 31, 161–168 (2016).
pubmed: 26347034
doi: 10.1002/mds.26370
Schinzel, R. T. et al. The Hyaluronidase, TMEM2, Promotes ER Homeostasis and Longevity Independent of the UPR(ER). Cell 179, 1306–1318.e1318 (2019).
pubmed: 31761535
doi: 10.1016/j.cell.2019.10.018
pmcid: 6913896
Duffy, M. F. et al. Lewy body-like alpha-synuclein inclusions trigger reactive microgliosis prior to nigral degeneration. J. Neuroinflammation 15, 129 (2018).
pubmed: 29716614
pmcid: 5930695
doi: 10.1186/s12974-018-1171-z
Harms, A. S. et al. alpha-Synuclein fibrils recruit peripheral immune cells in the rat brain prior to neurodegeneration. Acta Neuropathol. Commun. 5, 85 (2017).
pubmed: 29162163
pmcid: 5698965
doi: 10.1186/s40478-017-0494-9
Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752–758 (2005).
pubmed: 15895084
doi: 10.1038/nn1472
Hoffmann, A. et al. Alpha-synuclein activates BV2 microglia dependent on its aggregation state. Biochem Biophys. Res Commun. 479, 881–886 (2016).
pubmed: 27666480
doi: 10.1016/j.bbrc.2016.09.109
Kim, S. et al. Alpha-synuclein induces migration of BV-2 microglial cells by up-regulation of CD44 and MT1-MMP. J. Neurochem. 109, 1483–1496 (2009).
pubmed: 19457162
doi: 10.1111/j.1471-4159.2009.06075.x
Heller, J. P. & Rusakov, D. A. The nanoworld of the tripartite synapse: insights from super-resolution microscopy. Front Cell Neurosci. 11, 374 (2017).
pubmed: 29225567
pmcid: 5705901
doi: 10.3389/fncel.2017.00374
Schmitt, F. O. & Sampson, F. E. The brain cell microenvironment. Neurosci. Res. Program Bull. 7, 277–417 (1969).
Nagy, N. et al. Inhibition of hyaluronan synthesis restores immune tolerance during autoimmune insulitis. J. Clin. Invest. 125, 3928–3940 (2015).
pubmed: 26368307
pmcid: 4607113
doi: 10.1172/JCI79271
Mueller, A. M., Yoon, B. H. & Sadiq, S. A. Inhibition of hyaluronan synthesis protects against central nervous system (CNS) autoimmunity and increases CXCL12 expression in the inflamed CNS. J. Biol. Chem. 289, 22888–22899 (2014).
pubmed: 24973214
pmcid: 4132791
doi: 10.1074/jbc.M114.559583
Cardona, A. et al. TrakEM2 software for neural circuit reconstruction. PLoS ONE 7, e38011 (2012).
pubmed: 22723842
pmcid: 3378562
doi: 10.1371/journal.pone.0038011
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772
doi: 10.1038/nmeth.2019
Danné, N. et al. Ultrashort carbon nanotubes that fluoresce brightly in the near-infrared. ACS Nano 12, 6059–6065 (2018).
pubmed: 29889499
doi: 10.1021/acsnano.8b02307
Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584–590 (2013).
pubmed: 23644547
pmcid: 3684049
doi: 10.1038/nmeth.2472
Wang, Y. et al. Localization events-based sample drift correction for localization microscopy with redundant cross-correlation algorithm. Opt. Express 22, 15982–15991 (2014).
pubmed: 24977854
pmcid: 4162368
doi: 10.1364/OE.22.015982
Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).
pubmed: 2440339
doi: 10.1016/0003-2697(87)90021-2
Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome. Biol. 3, research0034.1 (2002).
Herva, M. E. et al. Anti-amyloid compounds inhibit alpha-synuclein aggregation induced by protein misfolding cyclic amplification (PMCA). J. Biol. Chem. 289, 11897–11905 (2014).
pubmed: 24584936
pmcid: 4002097
doi: 10.1074/jbc.M113.542340