Synucleinopathy alters nanoscale organization and diffusion in the brain extracellular space through hyaluronan remodeling.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
10 07 2020
Historique:
received: 11 06 2019
accepted: 18 06 2020
entrez: 12 7 2020
pubmed: 12 7 2020
medline: 1 9 2020
Statut: epublish

Résumé

In recent years, exploration of the brain extracellular space (ECS) has made remarkable progress, including nanoscopic characterizations. However, whether ECS precise conformation is altered during brain pathology remains unknown. Here we study the nanoscale organization of pathological ECS in adult mice under degenerative conditions. Using electron microscopy in cryofixed tissue and single nanotube tracking in live brain slices combined with super-resolution imaging analysis, we find enlarged ECS dimensions and increased nanoscale diffusion after α-synuclein-induced neurodegeneration. These animals display a degraded hyaluronan matrix in areas close to reactive microglia. Furthermore, experimental hyaluronan depletion in vivo reduces dopaminergic cell loss and α-synuclein load, induces microgliosis and increases ECS diffusivity, highlighting hyaluronan as diffusional barrier and local tissue organizer. These findings demonstrate the interplay of ECS, extracellular matrix and glia in pathology, unraveling ECS features relevant for the α-synuclein propagation hypothesis and suggesting matrix manipulation as a disease-modifying strategy.

Identifiants

pubmed: 32651387
doi: 10.1038/s41467-020-17328-9
pii: 10.1038/s41467-020-17328-9
pmc: PMC7351768
doi:

Substances chimiques

Hyaluronic Acid 9004-61-9

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3440

Références

Syková, E. & Nicholson, C. Diffusion in brain extracellular space. Physiol. Rev. 88, 1277–1340 (2008).
pubmed: 18923183 doi: 10.1152/physrev.00027.2007
Godin, A. G. et al. Single-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain. Nat. Nanotechnol. 12, 238–243 (2017).
pubmed: 27870840 doi: 10.1038/nnano.2016.248
Zheng, K. et al. Nanoscale diffusion in the synaptic cleft and beyond measured with time-resolved fluorescence anisotropy imaging. Sci. Rep. 7, 42022 (2017).
pubmed: 28181535 pmcid: 5299514 doi: 10.1038/srep42022
Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci. Transl. Med 4, 147ra111 (2012).
pubmed: 22896675 pmcid: 3551275 doi: 10.1126/scitranslmed.3003748
Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342, 373–377 (2013).
pubmed: 24136970 doi: 10.1126/science.1241224
Holter, K. E. et al. Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow. Proc. Natl Acad. Sci. USA 114, 9894–9899 (2017).
pubmed: 28847942 doi: 10.1073/pnas.1706942114 pmcid: 5604020
Nicholson, C. & Hrabetova, S. Brain extracellular space: the final frontier of neuroscience. Biophys. J. 113, 2133–2142 (2017).
pubmed: 28755756 pmcid: 5700249 doi: 10.1016/j.bpj.2017.06.052
Dityatev, A., Schachner, M. & Sonderegger, P. The dual role of the extracellular matrix in synaptic plasticity and homeostasis. Nat. Rev. Neurosci. 11, 735–746 (2010).
pubmed: 20944663 doi: 10.1038/nrn2898
Ruoslahti, E. Brain extracellular matrix. Glycobiology 6, 489–492 (1996).
pubmed: 8877368 doi: 10.1093/glycob/6.5.489
Jiang, D., Liang, J. & Noble, P. W. Hyaluronan as an immune regulator in human diseases. Physiol. Rev. 91, 221–264 (2011).
pubmed: 21248167 doi: 10.1152/physrev.00052.2009
Gaudet, A. D. & Popovich, P. G. Extracellular matrix regulation of inflammation in the healthy and injured spinal cord. Exp. Neurol. 258, 24–34 (2014).
pubmed: 25017885 doi: 10.1016/j.expneurol.2013.11.020
Lau, L. W., Cua, R., Keough, M. B., Haylock-Jacobs, S. & Yong, V. W. Pathophysiology of the brain extracellular matrix: a new target for remyelination. Nat. Rev. Neurosci. 14, 722–729 (2013).
pubmed: 23985834 doi: 10.1038/nrn3550
Bonneh-Barkay, D. & Wiley, C. A. Brain extracellular matrix in neurodegeneration. Brain Pathol. 19, 573–585 (2009).
pubmed: 18662234 doi: 10.1111/j.1750-3639.2008.00195.x
Hrabetova, S., Cognet, L., Rusakov, D. A. & Nagerl, U. V. Unveiling the extracellular space of the brain: from super-resolved microstructure to in vivo function. J. Neurosci. 38, 9355–9363 (2018).
pubmed: 30381427 pmcid: 6706003 doi: 10.1523/JNEUROSCI.1664-18.2018
Vanharreveld, A., Crowell, J. & Malhotra, S. K. A study of extracellular space in central nervous tissue by freeze-substitution. J. Cell Biol. 25, 117–137 (1965).
pubmed: 14283623 doi: 10.1083/jcb.25.1.117
Ohno, N., Terada, N., Saitoh, S. & Ohno, S. Extracellular space in mouse cerebellar cortex revealed by in vivo cryotechnique. J. Comp. Neurol. 505, 292–301 (2007).
pubmed: 17879272 doi: 10.1002/cne.21498
Korogod, N., Petersen, C. C. & Knott, G. W. Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation. Elife 4 e05793 (2015).
Tønnesen, J., Inavalli, V. & Nägerl, U. V. Super-resolution imaging of the extracellular space in living brain tissue. Cell 172, 1108–1121 e1115 (2018).
pubmed: 29474910 doi: 10.1016/j.cell.2018.02.007
Paviolo, C. et al. Nanoscale exploration of the extracellular space in the live brain by combining single carbon nanotube tracking and super-resolution imaging analysis. Methods 174, 91–99 (2020).
pubmed: 30862507 doi: 10.1016/j.ymeth.2019.03.005
Recasens, A. et al. Lewy body extracts from Parkinson disease brains trigger alpha-synuclein pathology and neurodegeneration in mice and monkeys. Ann. Neurol. 75, 351–362 (2014).
pubmed: 24243558 doi: 10.1002/ana.24066
Bourdenx, M. et al. Identification of distinct pathological signatures induced by patient-derived alpha-synuclein structures in nonhuman primates. Sci. Adv. 6, eaaz9165 (2020).
pubmed: 32426502 pmcid: 7220339 doi: 10.1126/sciadv.aaz9165
Cragg, B. Preservation of extracellular space during fixation of the brain for electron microscopy. Tissue Cell 12, 63–72 (1980).
pubmed: 6987773 doi: 10.1016/0040-8166(80)90052-X
Pallotto, M., Watkins, P. V., Fubara, B., Singer, J. H. & Briggman, K. L. Extracellular space preservation aids the connectomic analysis of neural circuits. Elife 4, e08206 (2015).
Syková, E. Extrasynaptic volume transmission and diffusion parameters of the extracellular space. Neuroscience 129, 861–876 (2004).
pubmed: 15561404 doi: 10.1016/j.neuroscience.2004.06.077
Nicholson, C. & Syková, E. Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 21, 207–215 (1998).
pubmed: 9610885 doi: 10.1016/S0166-2236(98)01261-2
Deepa, S. S. et al. Composition of perineuronal net extracellular matrix in rat brain: a different disaccharide composition for the net-associated proteoglycans. J. Biol. Chem. 281, 17789–17800 (2006).
pubmed: 16644727 doi: 10.1074/jbc.M600544200
Vargová, L. & Syková, E. Astrocytes and extracellular matrix in extrasynaptic volume transmission. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130608 (2014).
pubmed: 25225101 pmcid: 4173293 doi: 10.1098/rstb.2013.0608
de la Motte, C. A. & Drazba, J. A. Viewing hyaluronan: imaging contributes to imagining new roles for this amazing matrix polymer. J. Histochem Cytochem. 59, 252–257 (2011).
pubmed: 21378279 pmcid: 3201155 doi: 10.1369/0022155410397760
Arranz, A. M. et al. Hyaluronan deficiency due to Has3 knock-out causes altered neuronal activity and seizures via reduction in brain extracellular space. J. Neurosci. 34, 6164–6176 (2014).
pubmed: 24790187 pmcid: 4004806 doi: 10.1523/JNEUROSCI.3458-13.2014
Kochlamazashvili, G. et al. The extracellular matrix molecule hyaluronic acid regulates hippocampal synaptic plasticity by modulating postsynaptic L-type Ca(2+) channels. Neuron 67, 116–128 (2010).
pubmed: 20624596 pmcid: 3378029 doi: 10.1016/j.neuron.2010.05.030
Morawski, M. et al. Involvement of perineuronal and perisynaptic extracellular matrix in Alzheimer’s disease neuropathology. Brain Pathol. 22, 547–561 (2012).
pubmed: 22126211 pmcid: 3639011 doi: 10.1111/j.1750-3639.2011.00557.x
Richter, R. P., Baranova, N. S., Day, A. J. & Kwok, J. C. Glycosaminoglycans in extracellular matrix organisation: are concepts from soft matter physics key to understanding the formation of perineuronal nets? Curr. Opin. Struct. Biol. 50, 65–74 (2018).
pubmed: 29275227 doi: 10.1016/j.sbi.2017.12.002
Fernandez, E. & Jelinek, H. F. Use of fractal theory in neuroscience: methods, advantages, and potential problems. Methods 24, 309–321 (2001).
pubmed: 11465996 doi: 10.1006/meth.2001.1201
Racine, R. & Mummert, M. E. In Molecular Regulation of Endocytosis (ed. Ceresa, B.) (IntechOpen, 2012).
Dzwonek, J. & Wilczynski, G. M. CD44: molecular interactions, signaling and functions in the nervous system. Front Cell Neurosci. 9, 175 (2015).
pubmed: 25999819 pmcid: 4423434 doi: 10.3389/fncel.2015.00175
Joers, V., Tansey, M. G., Mulas, G. & Carta, A. R. Microglial phenotypes in Parkinson’s disease and animal models of the disease. Prog. Neurobiol. 155, 57–75 (2017).
pubmed: 27107797 doi: 10.1016/j.pneurobio.2016.04.006
De Biase, L. M. et al. Local cues establish and maintain region-specific phenotypes of basal ganglia microglia. Neuron 95, 341–356.e346 (2017).
pubmed: 28689984 pmcid: 5754189 doi: 10.1016/j.neuron.2017.06.020
Tona, A. & Bignami, A. Effect of hyaluronidase on brain extracellular matrix in vivo and optic nerve regeneration. J. Neurosci. Res. 36, 191–199 (1993).
pubmed: 7505341 doi: 10.1002/jnr.490360209
Cserép, C. et al. Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science 367, 528–537 (2020).
pubmed: 31831638 doi: 10.1126/science.aax6752
Nagy, N. et al. 4-methylumbelliferone treatment and hyaluronan inhibition as a therapeutic strategy in inflammation, autoimmunity, and cancer. Front Immunol. 6, 123 (2015).
pubmed: 25852691 pmcid: 4369655
Kinney, J. P. et al. Extracellular sheets and tunnels modulate glutamate diffusion in hippocampal neuropil. J. Comp. Neurol. 521, 448–464 (2013).
pubmed: 22740128 pmcid: 3540825 doi: 10.1002/cne.23181
Cragg, S. J., Nicholson, C., Kume-Kick, J., Tao, L. & Rice, M. E. Dopamine-mediated volume transmission in midbrain is regulated by distinct extracellular geometry and uptake. J. Neurophysiol. 85, 1761–1771 (2001).
pubmed: 11287497 doi: 10.1152/jn.2001.85.4.1761
Turkowyd, B., Virant, D. & Endesfelder, U. From single molecules to life: microscopy at the nanoscale. Anal. Bioanal. Chem. 408, 6885–6911 (2016).
pubmed: 27613013 pmcid: 5566169 doi: 10.1007/s00216-016-9781-8
Rusakov, D. A. & Kullmann, D. M. Geometric and viscous components of the tortuosity of the extracellular space in the brain. Proc. Natl Acad. Sci. USA 95, 8975–8980 (1998).
pubmed: 9671789 doi: 10.1073/pnas.95.15.8975 pmcid: 21187
Thorne, R. G., Lakkaraju, A., Rodriguez-Boulan, E. & Nicholson, C. In vivo diffusion of lactoferrin in brain extracellular space is regulated by interactions with heparan sulfate. Proc. Natl Acad. Sci. USA 105, 8416–8421 (2008).
pubmed: 18541909 doi: 10.1073/pnas.0711345105 pmcid: 2448851
Toole, B. P. Hyaluronan: from extracellular glue to pericellular cue. Nat. Rev. Cancer 4, 528–539 (2004).
pubmed: 15229478 doi: 10.1038/nrc1391
Fieber, C. et al. Hyaluronan-oligosaccharide-induced transcription of metalloproteases. J. Cell Sci. 117, 359–367 (2004).
pubmed: 14657275 doi: 10.1242/jcs.00831
Knudson, W., Chow, G. & Knudson, C. B. CD44-mediated uptake and degradation of hyaluronan. Matrix Biol. 21, 15–23 (2002).
pubmed: 11827788 doi: 10.1016/S0945-053X(01)00186-X
Soltes, L. et al. Degradative action of reactive oxygen species on hyaluronan. Biomacromolecules 7, 659–668 (2006).
pubmed: 16529395 doi: 10.1021/bm050867v
Dehay, B., Vila, M., Bezard, E., Brundin, P. & Kordower, J. H. Alpha-synuclein propagation: New insights from animal models. Mov. Disord. 31, 161–168 (2016).
pubmed: 26347034 doi: 10.1002/mds.26370
Schinzel, R. T. et al. The Hyaluronidase, TMEM2, Promotes ER Homeostasis and Longevity Independent of the UPR(ER). Cell 179, 1306–1318.e1318 (2019).
pubmed: 31761535 doi: 10.1016/j.cell.2019.10.018 pmcid: 6913896
Duffy, M. F. et al. Lewy body-like alpha-synuclein inclusions trigger reactive microgliosis prior to nigral degeneration. J. Neuroinflammation 15, 129 (2018).
pubmed: 29716614 pmcid: 5930695 doi: 10.1186/s12974-018-1171-z
Harms, A. S. et al. alpha-Synuclein fibrils recruit peripheral immune cells in the rat brain prior to neurodegeneration. Acta Neuropathol. Commun. 5, 85 (2017).
pubmed: 29162163 pmcid: 5698965 doi: 10.1186/s40478-017-0494-9
Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752–758 (2005).
pubmed: 15895084 doi: 10.1038/nn1472
Hoffmann, A. et al. Alpha-synuclein activates BV2 microglia dependent on its aggregation state. Biochem Biophys. Res Commun. 479, 881–886 (2016).
pubmed: 27666480 doi: 10.1016/j.bbrc.2016.09.109
Kim, S. et al. Alpha-synuclein induces migration of BV-2 microglial cells by up-regulation of CD44 and MT1-MMP. J. Neurochem. 109, 1483–1496 (2009).
pubmed: 19457162 doi: 10.1111/j.1471-4159.2009.06075.x
Heller, J. P. & Rusakov, D. A. The nanoworld of the tripartite synapse: insights from super-resolution microscopy. Front Cell Neurosci. 11, 374 (2017).
pubmed: 29225567 pmcid: 5705901 doi: 10.3389/fncel.2017.00374
Schmitt, F. O. & Sampson, F. E. The brain cell microenvironment. Neurosci. Res. Program Bull. 7, 277–417 (1969).
Nagy, N. et al. Inhibition of hyaluronan synthesis restores immune tolerance during autoimmune insulitis. J. Clin. Invest. 125, 3928–3940 (2015).
pubmed: 26368307 pmcid: 4607113 doi: 10.1172/JCI79271
Mueller, A. M., Yoon, B. H. & Sadiq, S. A. Inhibition of hyaluronan synthesis protects against central nervous system (CNS) autoimmunity and increases CXCL12 expression in the inflamed CNS. J. Biol. Chem. 289, 22888–22899 (2014).
pubmed: 24973214 pmcid: 4132791 doi: 10.1074/jbc.M114.559583
Cardona, A. et al. TrakEM2 software for neural circuit reconstruction. PLoS ONE 7, e38011 (2012).
pubmed: 22723842 pmcid: 3378562 doi: 10.1371/journal.pone.0038011
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772 doi: 10.1038/nmeth.2019
Danné, N. et al. Ultrashort carbon nanotubes that fluoresce brightly in the near-infrared. ACS Nano 12, 6059–6065 (2018).
pubmed: 29889499 doi: 10.1021/acsnano.8b02307
Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584–590 (2013).
pubmed: 23644547 pmcid: 3684049 doi: 10.1038/nmeth.2472
Wang, Y. et al. Localization events-based sample drift correction for localization microscopy with redundant cross-correlation algorithm. Opt. Express 22, 15982–15991 (2014).
pubmed: 24977854 pmcid: 4162368 doi: 10.1364/OE.22.015982
Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).
pubmed: 2440339 doi: 10.1016/0003-2697(87)90021-2
Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome. Biol. 3, research0034.1 (2002).
Herva, M. E. et al. Anti-amyloid compounds inhibit alpha-synuclein aggregation induced by protein misfolding cyclic amplification (PMCA). J. Biol. Chem. 289, 11897–11905 (2014).
pubmed: 24584936 pmcid: 4002097 doi: 10.1074/jbc.M113.542340

Auteurs

Federico N Soria (FN)

Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33076, Bordeaux, France.
Centre National de la Recherche Scientifique, IMN, UMR 5293, 33076, Bordeaux, France.
Achucarro Basque Center for Neuroscience, Universidad del País Vasco (UPV/EHU), 48940, Leioa, Spain.

Chiara Paviolo (C)

Université de Bordeaux, Laboratoire Photonique Numérique et Nanosciences, UMR 5298, 33400, Talence, France.
Institut d'Optique & Centre National de la Recherche Scientifique, LP2N, UMR 5298, 33400, Talence, France.

Evelyne Doudnikoff (E)

Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33076, Bordeaux, France.
Centre National de la Recherche Scientifique, IMN, UMR 5293, 33076, Bordeaux, France.

Marie-Laure Arotcarena (ML)

Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33076, Bordeaux, France.
Centre National de la Recherche Scientifique, IMN, UMR 5293, 33076, Bordeaux, France.

Antony Lee (A)

Université de Bordeaux, Laboratoire Photonique Numérique et Nanosciences, UMR 5298, 33400, Talence, France.
Institut d'Optique & Centre National de la Recherche Scientifique, LP2N, UMR 5298, 33400, Talence, France.

Noémie Danné (N)

Université de Bordeaux, Laboratoire Photonique Numérique et Nanosciences, UMR 5298, 33400, Talence, France.
Institut d'Optique & Centre National de la Recherche Scientifique, LP2N, UMR 5298, 33400, Talence, France.

Amit Kumar Mandal (AK)

Université de Bordeaux, Laboratoire Photonique Numérique et Nanosciences, UMR 5298, 33400, Talence, France.
Institut d'Optique & Centre National de la Recherche Scientifique, LP2N, UMR 5298, 33400, Talence, France.

Philippe Gosset (P)

Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33076, Bordeaux, France.
Centre National de la Recherche Scientifique, IMN, UMR 5293, 33076, Bordeaux, France.

Benjamin Dehay (B)

Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33076, Bordeaux, France.
Centre National de la Recherche Scientifique, IMN, UMR 5293, 33076, Bordeaux, France.

Laurent Groc (L)

Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33076, Bordeaux, France.
Centre National de la Recherche Scientifique, IINS, UMR 5297, 33076, Bordeaux, France.

Laurent Cognet (L)

Université de Bordeaux, Laboratoire Photonique Numérique et Nanosciences, UMR 5298, 33400, Talence, France. laurent.cognet@u-bordeaux.fr.
Institut d'Optique & Centre National de la Recherche Scientifique, LP2N, UMR 5298, 33400, Talence, France. laurent.cognet@u-bordeaux.fr.

Erwan Bezard (E)

Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33076, Bordeaux, France. erwan.bezard@u-bordeaux.fr.
Centre National de la Recherche Scientifique, IMN, UMR 5293, 33076, Bordeaux, France. erwan.bezard@u-bordeaux.fr.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH