The impact of nanoscale compositional variation on the properties of amorphous alloys.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
10 Jul 2020
10 Jul 2020
Historique:
received:
21
11
2019
accepted:
07
05
2020
entrez:
12
7
2020
pubmed:
12
7
2020
medline:
12
7
2020
Statut:
epublish
Résumé
The atomic distribution in amorphous FeZr alloys is found to be close to random, nevertheless, the composition can not be viewed as being homogenous at the nm-scale. The spatial variation of the local composition is identified as the root of the unusual magnetic properties in amorphous [Formula: see text] alloys. The findings are discussed and generalised with respect to the physical properties of amorphous and crystalline materials.
Identifiants
pubmed: 32651475
doi: 10.1038/s41598-020-67495-4
pii: 10.1038/s41598-020-67495-4
pmc: PMC7351730
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
11410Références
Buckel, W. & Hilsch, R. Supraleitung und Widerstand von Zinn mit Gitterstörungen. Z. Phys.131, 420–442 (1952).
doi: 10.1007/BF01329552
Klement, W., Willens, R. H. & Duwez, P. Non-crystalline structure in solidified gold-silicon alloys. Nature187, 869–870 (1960).
doi: 10.1038/187869b0
Greer, A. L. Metallic glasses. Science267, 1947–1953 (1995).
doi: 10.1126/science.267.5206.1947
Angell, C. A. Formation of glasses from liquids and biopolymers. Science267, 1924–1935 (1995).
doi: 10.1126/science.267.5206.1924
Chen, H. S. Glassy metals. Rep. Progress Phys.43, 353 (1980).
doi: 10.1088/0034-4885/43/4/001
Dao, M., Lu, L., Asaro, R., Hosson, J. D. & Ma, E. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Material.55, 4041–4065 (2007).
doi: 10.1016/j.actamat.2007.01.038
Greer, A. L. & Ma, E. Bulk metallic glasses: At the cutting edge of metals research. MRS Bull.32, 611–619 (2007).
doi: 10.1557/mrs2007.121
Inoue, A., Ohtera, K., Kita, K. & Masumoto, T. New amorphous Mg–Ce–Ni alloys with high strength and good ductility. Jpn. J. Appl. Phys.27, L2248 (1988).
doi: 10.1143/JJAP.27.L2248
Demetriou, M. D. et al. A damage-tolerant glass. Nat. Mater.10, 123–128 (2011).
doi: 10.1038/nmat2930
Zhang, L., Cheng, Y.-Q., Cao, A.-J., Xu, J. & Ma, E. Bulk metallic glasses with large plasticity: Composition design from the structural perspective. Acta Mater.57, 1154–1164 (2009).
doi: 10.1016/j.actamat.2008.11.002
Cheng, Y. Q., Cao, A. J., Sheng, H. W. & Ma, E. Local order influences initiation of plastic flow in metallic glass: Effects of alloy composition and sample cooling history. Acta Mater.56, 5263–5275 (2008).
doi: 10.1016/j.actamat.2008.07.011
Schnabel, V. et al. Temperature-induced short-range order changes in Co67B33 glassy thin films and elastic limit implications. Mater. Res. Lett.3, 82–87 (2015).
doi: 10.1080/21663831.2014.963207
Magnus, F. et al. Giant magnetic domains in amorphous SmCo thin films. Phys. Rev. B89, 224420 (2014).
doi: 10.1103/PhysRevB.89.224420
Kapaklis, V. et al. Violation of Hunds third rule in structurally disordered ferromagnets. Phys. Rev. B84, 024411 (2011).
doi: 10.1103/PhysRevB.84.024411
Hostert, C. et al. Ab initio molecular dynamics model for density, elastic properties and short range order of Co–Fe–Ta–B metallic glass thin films. J. Phys. Condens. Matter23, 475401 (2011).
doi: 10.1088/0953-8984/23/47/475401
Hostert, C., Music, D., Kapaklis, V., Hjörvarsson, B. & Schneider, J. M. Density, elastic and magnetic properties of Co–Fe–Ta–Si metallic glasses by theory and experiment. Scripta Mater.66, 765–768 (2012).
doi: 10.1016/j.scriptamat.2012.01.060
Krebs, H. U., Webb, D. J. & Marshall, A. F. Phase separation in amorphous Fe–Zr: Comparison of sputtered and solid-state-reacted films. Phys. Rev. B35, 5392–5395 (1987).
doi: 10.1103/PhysRevB.35.5392
Xiao, G. & Chien, C. Nonuniqueness of the state of amorphous pure iron. Phys. Rev. B35, 8763 (1987).
doi: 10.1103/PhysRevB.35.8763
Bakonyi, I. Relevance of Fe atomic volumes for the magnetic properties of Fe-rich metallic glasses. J. Magnet. Magnet. Mater.324, 3961–3965 (2012).
doi: 10.1016/j.jmmm.2012.07.003
Hirata, A. et al. Direct observation of local atomic order in a metallic glass. Nat. Mater.10, 28–33 (2011).
doi: 10.1038/nmat2897
Buschow, K. H. J. & Smit, P. H. Magnetic and electrical transport properties of amorphous Zr–Fe alloys. J. Magnet. Magnet. Mater.23, 85–91 (1981).
doi: 10.1016/0304-8853(81)90072-X
Ahlberg, M., Korelis, P., Andersson, G. & Hjörvarsson, B. Effect of ferromagnetic proximity on critical behavior. Phys. Rev. B85, 224425 (2012).
doi: 10.1103/PhysRevB.85.224425
Ahlberg, M. et al. Reversed interface effects in amorphous FeZr/AlZr multilayers. Phys. Rev. B90, 184403 (2014).
doi: 10.1103/PhysRevB.90.184403
Magnus, F. et al. Long-range magnetic interactions and proximity effects in an amorphous exchange-spring magnet. Nat. Commun.7, 11931 (2016).
doi: 10.1038/ncomms11931
Sharma, P., Kimura, H. & Inoue, A. Magnetic behavior of cosputtered Fe–Zr amorphous thin films exhibiting perpendicular magnetic anisotropy. Phys. Rev. B78, 134414 (2008).
doi: 10.1103/PhysRevB.78.134414
Read, D., Moyo, T. & Hallam, G. Collapse of ferromagnetism in iron rich Fe–Zr amorphous alloys. J. Magnet. Magnet. Mater.54–57, 309–310 (1986).
doi: 10.1016/0304-8853(86)90601-3
P. Korelis, Uncovering Magnetic Order in Nanostructured Disordered Materials: A Study of Amorphous Magnetic Layered Structures. Ph.D. thesis, Uppsala University, Materials Physics (2011).
Xin, X., Pálsson, G. K., Wolff, M. & Hjörvarsson, B. Finite-size effects: Hydrogen in Fe/V(001) superlattices. Phys. Rev. Lett.113, 046103 (2014).
doi: 10.1103/PhysRevLett.113.046103
Huang, F., Kief, M. T., Mankey, G. J. & Willis, R. F. Magnetism in the few-monolayers limit: A surface magneto-optic Kerr-effect study of the magnetic behavior of ultrathin films of Co, Ni, and Co-Ni alloys on Cu(100) and Cu(111). Phys. Rev. B49, 3962–3971 (1994).
doi: 10.1103/PhysRevB.49.3962
Ahlberg, M., Andersson, G. & Hjörvarsson, B. Two-dimensional [Formula: see text]-like amorphous Co[Formula: see text] multilayers. Phys. Rev. B83, 224404 (2011).
doi: 10.1103/PhysRevB.83.224404
Korelis, P. T. et al. Finite-size effects in amorphous Fe[Formula: see text] multilayers. Phys. Rev. B85, 214430 (2012).
doi: 10.1103/PhysRevB.85.214430
Liebig, A., Korelis, P. T., Ahlberg, M. & Hjörvarsson, B. Experimental realization of amorphous two-dimensional [Formula: see text] magnets. Phys. Rev. B84, 024430 (2011).
doi: 10.1103/PhysRevB.84.024430
Sheng, H. W., Luo, W. K., Alamgir, F. M., Bai, J. M. & Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature439, 419 (2006).
doi: 10.1038/nature04421
Yu, H.-B., Richert, R. & Samwer, K. Structural rearrangements governing Johari–Goldstein relaxations in metallic glasses. Sci. Adv.3, e1701577 (2017).
doi: 10.1126/sciadv.1701577
Berthier, L. & Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys.83, 587–645 (2011).
doi: 10.1103/RevModPhys.83.587
Korelis, P. T. et al. Highly amorphous Fe 90 Zr 10 thin films, and the influence of crystallites on the magnetism. Thin Solid Films519, 404–409 (2010).
doi: 10.1016/j.tsf.2010.07.084
Kelly, T. F. & Miller, M. K. Atom probe tomography. Rev. Sci. Instrum.78, 031101 (2007).
doi: 10.1063/1.2709758