Improved nearest-neighbor parameters for the stability of RNA/DNA hybrids under a physiological condition.


Journal

Nucleic acids research
ISSN: 1362-4962
Titre abrégé: Nucleic Acids Res
Pays: England
ID NLM: 0411011

Informations de publication

Date de publication:
02 12 2020
Historique:
accepted: 09 07 2020
received: 31 05 2020
pubmed: 15 7 2020
medline: 23 12 2020
entrez: 15 7 2020
Statut: ppublish

Résumé

The stability of Watson-Crick paired RNA/DNA hybrids is important for designing optimal oligonucleotides for ASO (Antisense Oligonucleotide) and CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas9 techniques. Previous nearest-neighbour (NN) parameters for predicting hybrid stability in a 1 M NaCl solution, however, may not be applicable for predicting stability at salt concentrations closer to physiological condition (e.g. ∼100 mM Na+ or K+ in the presence or absence of Mg2+). Herein, we report measured thermodynamic parameters of 38 RNA/DNA hybrids at 100 mM NaCl and derive new NN parameters to predict duplex stability. Predicted ΔG°37 and Tm values based on the established NN parameters agreed well with the measured values with 2.9% and 1.1°C deviations, respectively. The new results can also be used to make precise predictions for duplexes formed in 100 mM KCl or 100 mM NaCl in the presence of 1 mM Mg2+, which can mimic an intracellular and extracellular salt condition, respectively. Comparisons of the predicted thermodynamic parameters with published data using ASO and CRISPR-Cas9 may allow designing shorter oligonucleotides for these techniques that will diminish the probability of non-specific binding and also improve the efficiency of target gene regulation.

Identifiants

pubmed: 32663294
pii: 5871365
doi: 10.1093/nar/gkaa572
pmc: PMC7708073
doi:

Substances chimiques

Cations 0
Oligonucleotides, Antisense 0
Sodium Chloride 451W47IQ8X
RNA 63231-63-0
Potassium Chloride 660YQ98I10
DNA 9007-49-2
Sodium 9NEZ333N27
Magnesium I38ZP9992A

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

12042-12054

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.

Références

Nucleic Acids Res. 2019 Apr 23;47(7):3284-3294
pubmed: 30753582
Proc Natl Acad Sci U S A. 1986 Jun;83(11):3746-50
pubmed: 3459152
Nat Chem. 2012 Jan 22;4(3):208-14
pubmed: 22354435
Nucleic Acids Res. 2009 Apr;37(6):1713-25
pubmed: 19190094
Biochemistry. 1994 May 3;33(17):5298-304
pubmed: 7513557
Biochemistry. 2013 Oct 22;52(42):7477-85
pubmed: 24106785
Biochemistry. 1991 Jan 29;30(4):1097-118
pubmed: 1703438
Science. 2014 Nov 28;346(6213):1258096
pubmed: 25430774
Nat Protoc. 2013 Nov;8(11):2281-2308
pubmed: 24157548
Nucleic Acids Res. 2010 Nov;38(20):7100-11
pubmed: 20615897
Biochemistry. 1996 Sep 24;35(38):12538-48
pubmed: 8823191
Biochemistry. 1997 Aug 26;36(34):10581-94
pubmed: 9265640
Mol Ther Nucleic Acids. 2014 Feb 18;3:e149
pubmed: 24549300
J Phys Chem B. 2011 Dec 1;115(47):13862-72
pubmed: 21992117
Biochemistry. 1998 Jun 9;37(23):8341-55
pubmed: 9622486
Nucleic Acids Res. 2017 Dec 15;45(22):12932-12944
pubmed: 29126318
FEBS Lett. 1994 Oct 31;354(1):74-8
pubmed: 7525350
Mol Cancer Ther. 2002 Mar;1(5):347-55
pubmed: 12489851
J Mol Biol. 1962 Jul;5:109-18
pubmed: 14470099
Biophys J. 2018 Apr 24;114(8):1776-1790
pubmed: 29694858
Sci Rep. 2017 Dec;7(1):143
pubmed: 28273945
Genome Biol. 2017 Oct 11;18(1):191
pubmed: 29020979
Biochemistry. 1995 Sep 5;34(35):11211-6
pubmed: 7545436
Biochemistry. 2008 May 13;47(19):5336-53
pubmed: 18422348
Biophys Chem. 2019 Aug;251:106189
pubmed: 31129553
Angew Chem Int Ed Engl. 2008;47(47):9034-8
pubmed: 18850626
Biochemistry. 1995 Aug 29;34(34):10807-15
pubmed: 7662660
Biochemistry. 2001 Jul 24;40(29):8444-51
pubmed: 11456481
Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15431-6
pubmed: 20716688
Quant Biol. 2014 Jun;2(2):59-70
pubmed: 25722925
Nucleic Acids Res. 2020 Jan 24;48(2):802-816
pubmed: 31802121
Adv Sci (Weinh). 2020 Feb 06;7(6):1902312
pubmed: 32195078
Nucleic Acids Res. 1996 Nov 15;24(22):4501-5
pubmed: 8948641
Nucleic Acids Res. 2001 Sep 1;29(17):3664-73
pubmed: 11522838
Biochemistry. 1998 Oct 20;37(42):14719-35
pubmed: 9778347
Mutat Res. 2001 Apr 18;475(1-2):113-21
pubmed: 11295157
Nat Biotechnol. 2013 Mar;31(3):230-2
pubmed: 23360966
Annu Rev Biochem. 1980;49:421-57
pubmed: 6250445
Biopolymers. 1971;10(12):2623-4
pubmed: 5126533
Nucleic Acids Res. 1997 Nov 15;25(22):4429-43
pubmed: 9358149
Science. 1993 Aug 20;261(5124):1004-12
pubmed: 8351515
Nature. 1971 Apr 9;230(5293):362-7
pubmed: 4927725
Science. 1982 May 21;216(4548):812-20
pubmed: 6177038
Antisense Nucleic Acid Drug Dev. 1998 Apr;8(2):133-4
pubmed: 9593052
Nucleic Acids Res. 1999 Jul 15;27(14):2957-65
pubmed: 10390539
Nat New Biol. 1973 Nov 14;246(150):40-1
pubmed: 4519026
Proc Natl Acad Sci U S A. 1986 Dec;83(24):9373-7
pubmed: 2432595
Nat Biotechnol. 2014 Mar;32(3):279-284
pubmed: 24463574
Annu Rev Pharmacol Toxicol. 2010;50:259-93
pubmed: 20055705
Biochemistry. 1996 Mar 19;35(11):3555-62
pubmed: 8639506
Nucleic Acids Res. 1999 Jan 15;27(2):543-50
pubmed: 9862978
Biochemistry. 1987 Jul 14;26(14):4554-8
pubmed: 2444250
Biochemistry. 2004 Mar 30;43(12):3537-54
pubmed: 15035624
Nucleic Acids Res. 1994 Oct 11;22(20):4326-34
pubmed: 7937162
Chem Sci. 2016 Aug 1;7(8):4951-4957
pubmed: 30155144
Biochemistry. 2011 Apr 19;50(15):3084-94
pubmed: 21410141
J Am Chem Soc. 2006 Jun 21;128(24):7957-63
pubmed: 16771510
J Vet Sci. 2019 May;20(3):e23
pubmed: 31161741
Proc Natl Acad Sci U S A. 2020 Jun 23;117(25):14194-14201
pubmed: 32522884
Biochemistry. 1986 Sep 23;25(19):5755-9
pubmed: 3778880
Annu Rev Biochem. 2014;83:813-41
pubmed: 24606136
Sci Rep. 2016 Jun 24;6:28566
pubmed: 27338021
Biopolymers. 2006 May;82(1):38-58
pubmed: 16429398
Nucleic Acid Ther. 2020 Aug;30(4):215-228
pubmed: 32125928
Biophys J. 2006 Feb 15;90(4):1175-90
pubmed: 16299077

Auteurs

Dipanwita Banerjee (D)

FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.

Hisae Tateishi-Karimata (H)

FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.

Tatsuya Ohyama (T)

FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.

Saptarshi Ghosh (S)

FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.

Tamaki Endoh (T)

FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.

Shuntaro Takahashi (S)

FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.

Naoki Sugimoto (N)

FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
FIRST (Graduate School of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.

Articles similaires

Psoriasis Humans Magnesium Zinc Trace Elements
Humans Perioperative Period Systematic Reviews as Topic Regression Analysis Developing Countries
Fragaria Light Plant Leaves Osmosis Stress, Physiological
Alzheimer Disease Humans Regression Analysis Quantitative Structure-Activity Relationship Drug Design

Classifications MeSH