Formaldehyde treatment of proteins enhances proteolytic degradation by the endo-lysosomal protease cathepsin S.
Animals
Antigens
/ chemistry
Cathepsins
/ metabolism
Cattle
Chromatography, Liquid
Cytochromes c
/ chemistry
Endosomes
/ drug effects
Escherichia coli
/ metabolism
Formaldehyde
Glycine
/ chemistry
Humans
Kinetics
Lactoglobulins
/ chemistry
Lysosomes
/ drug effects
Mass Spectrometry
Peptides
/ chemistry
Proteolysis
Serum Albumin, Bovine
/ chemistry
Solvents
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
14 07 2020
14 07 2020
Historique:
received:
17
10
2019
accepted:
17
06
2020
entrez:
16
7
2020
pubmed:
16
7
2020
medline:
23
1
2021
Statut:
epublish
Résumé
Enzymatic degradation of protein antigens by endo-lysosomal proteases in antigen-presenting cells is crucial for achieving cellular immunity. Structural changes caused by vaccine production process steps, such as formaldehyde inactivation, could affect the sensitivity of the antigen to lysosomal proteases. The aim of this study was to assess the effect of the formaldehyde detoxification process on the enzymatic proteolysis of antigens by studying model proteins. Bovine serum albumin, β-lactoglobulin A and cytochrome c were treated with various concentrations of isotopically labelled formaldehyde and glycine, and subjected to proteolytic digestion by cathepsin S, an important endo-lysosomal endoprotease. Degradation products were analysed by mass spectrometry and size exclusion chromatography. The most abundant modification sites were identified by their characteristic MS doublets. Unexpectedly, all studied proteins showed faster proteolytic degradation upon treatment with higher formaldehyde concentrations. This effect was observed both in the absence and presence of glycine, an often-used excipient during inactivation to prevent intermolecular crosslinking. Overall, subjecting proteins to formaldehyde or formaldehyde/glycine treatment results in changes in proteolysis rates, leading to an enhanced degradation speed. This accelerated degradation could have consequences for the immunogenicity and the efficacy of vaccine products containing formaldehyde-inactivated antigens.
Identifiants
pubmed: 32665578
doi: 10.1038/s41598-020-68248-z
pii: 10.1038/s41598-020-68248-z
pmc: PMC7360561
doi:
Substances chimiques
Antigens
0
Lactoglobulins
0
Peptides
0
Solvents
0
Formaldehyde
1HG84L3525
Serum Albumin, Bovine
27432CM55Q
Cytochromes c
9007-43-6
Cathepsins
EC 3.4.-
cathepsin S
EC 3.4.22.27
Glycine
TE7660XO1C
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
11535Références
Delamarre, L., Pack, M., Chang, H., Mellman, I. & Trombetta, E. S. Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science 307, 1630–1634. https://doi.org/10.1126/science.1108003 (2005).
doi: 10.1126/science.1108003
pubmed: 15761154
Carmicle, S., Dai, G., Steede, N. K. & Landry, S. J. Proteolytic sensitivity and helper T-cell epitope immunodominance associated with the mobile loop in Hsp10s. J. Biol. Chem. 277, 155–160. https://doi.org/10.1074/jbc.M107624200 (2002).
doi: 10.1074/jbc.M107624200
pubmed: 11673463
Kim, A. et al. Divergent paths for the selection of immunodominant epitopes from distinct antigenic sources. Nat. Commun. 5, 5369. https://doi.org/10.1038/ncomms6369 (2014).
doi: 10.1038/ncomms6369
pubmed: 25413013
pmcid: 4241505
Egger, M. et al. Assessing protein immunogenicity with a dendritic cell line-derived endolysosomal degradome. PLoS ONE 6, e17278. https://doi.org/10.1371/journal.pone.0017278 (2011).
doi: 10.1371/journal.pone.0017278
pubmed: 21359181
pmcid: 3040223
Delamarre, L., Couture, R., Mellman, I. & Trombetta, E. S. Enhancing immunogenicity by limiting susceptibility to lysosomal proteolysis. J. Exp. Med. 203, 2049–2055. https://doi.org/10.1084/jem.20052442 (2006).
doi: 10.1084/jem.20052442
pubmed: 16908625
pmcid: 2118388
Ackaert, C. et al. The impact of nitration on the structure and immunogenicity of the major birch pollen allergen Bet v 1.0101. PLoS One 9, e104520. https://doi.org/10.1371/journal.pone.0104520 (2014).
doi: 10.1371/journal.pone.0104520
pubmed: 25126882
pmcid: 4134196
Freier, R., Dall, E. & Brandstetter, H. Protease recognition sites in Bet v 1a are cryptic, explaining its slow processing relevant to its allergenicity. Sci. Rep. 5, 12707. https://doi.org/10.1038/srep12707 (2015).
doi: 10.1038/srep12707
pubmed: 26235974
pmcid: 4522599
Schulten, V. et al. Pru p 3, the nonspecific lipid transfer protein from peach, dominates the immune response to its homolog in hazelnut. Allergy 66, 1005–1013. https://doi.org/10.1111/j.1398-9995.2011.02567.x (2011).
doi: 10.1111/j.1398-9995.2011.02567.x
pubmed: 21352239
Kitzmuller, C. et al. A hypoallergenic variant of the major birch pollen allergen shows distinct characteristics in antigen processing and T-cell activation. Allergy 67, 1375–1382. https://doi.org/10.1111/all.12016 (2012).
doi: 10.1111/all.12016
pubmed: 22973879
Kitzmuller, C. et al. Correlation of sensitizing capacity and T-cell recognition within the Bet v 1 family. J. Allergy Clin. Immunol. 136, 151–158. https://doi.org/10.1016/j.jaci.2014.12.1928 (2015).
doi: 10.1016/j.jaci.2014.12.1928
pubmed: 25670010
pmcid: 4510200
De Mattia, F. et al. The vaccines consistency approach project: an EPAA initiative. Pharm. Biol. Sci. Notes 2015, 30–56 (2015).
Halder, M. et al. Recommendations of the VAC2VAC workshop on the design of multi-centre validation studies. Biologicals 52, 78–82. https://doi.org/10.1016/j.biologicals.2018.01.003 (2018).
doi: 10.1016/j.biologicals.2018.01.003
pubmed: 29395838
pmcid: 6278876
De Mattia, F. et al. The consistency approach for quality control of vaccines—a strategy to improve quality control and implement 3Rs. Biologicals 39, 59–65. https://doi.org/10.1016/j.biologicals.2010.12.001 (2011).
doi: 10.1016/j.biologicals.2010.12.001
pubmed: 21277791
Metz, B. et al. Identification of formaldehyde-induced modifications in proteins: reactions with insulin. Bioconjug. Chem. 17, 815–822. https://doi.org/10.1021/bc050340f (2006).
doi: 10.1021/bc050340f
pubmed: 16704222
Metz, B. et al. Identification of formaldehyde-induced modifications in proteins: reactions with model peptides. J. Biol. Chem. 279, 6235–6243. https://doi.org/10.1074/jbc.M310752200 (2004).
doi: 10.1074/jbc.M310752200
pubmed: 14638685
Metz, B., Jiskoot, W., Hennink, W. E., Crommelin, D. J. & Kersten, G. F. Physicochemical and immunochemical techniques predict the quality of diphtheria toxoid vaccines. Vaccine 22, 156–167 (2003).
doi: 10.1016/j.vaccine.2003.08.003
di Tommaso, A. et al. Formaldehyde treatment of proteins can constrain presentation to T cells by limiting antigen processing. Infect. Immun 62, 1830–1834 (1994).
doi: 10.1128/IAI.62.5.1830-1834.1994
Golghalyani, V., Neupartl, M., Wittig, I., Bahr, U. & Karas, M. ArgC-like digestion: Complementary or alternative to tryptic digestion?. J. Proteome Res. 16, 978–987. https://doi.org/10.1021/acs.jproteome.6b00921 (2017).
doi: 10.1021/acs.jproteome.6b00921
pubmed: 28051317
Colbert, J. D., Matthews, S. P., Miller, G. & Watts, C. Diverse regulatory roles for lysosomal proteases in the immune response. Eur. J. Immunol. 39, 2955–2965. https://doi.org/10.1002/eji.200939650 (2009).
doi: 10.1002/eji.200939650
pubmed: 19637232
Cramer, C. J., Johnson, J. L. & Kamel, A. M. Prediction of mass spectral response factors from predicted chemometric data for druglike molecules. J. Am. Soc. Mass. Spectrom. 28, 278–285. https://doi.org/10.1007/s13361-016-1536-4 (2017).
doi: 10.1007/s13361-016-1536-4
pubmed: 27832527
Metz, B. et al. Identification of formaldehyde-induced modifications in diphtheria toxin. J. Pharm. Sci. https://doi.org/10.1016/j.xphs.2019.10.047 (2019).
doi: 10.1016/j.xphs.2019.10.047
pubmed: 31678246
Eschweiler, W. Ersatz von an stickstoff gebundenen wasserstoffatomen durch die methylgruppe mit hülfe von formaldehyd. Ber. Dtsch. Chem. Ges. 38, 880–882. https://doi.org/10.1002/cber.190503801154 (1905).
doi: 10.1002/cber.190503801154
Trezl, L., Rusznak, I., Tyihak, E., Szarvas, T. & Szende, B. Spontaneous N epsilon-methylation and N epsilon-formylation reactions between L-lysine and formaldehyde inhibited by L-ascorbic acid. Biochem. J. 214, 289–292 (1983).
doi: 10.1042/bj2140289
Daniel, R. M., Cowan, D. A., Morgan, H. W. & Curran, M. P. A correlation between protein thermostability and resistance to proteolysis. Biochem. J. 207, 641–644 (1982).
doi: 10.1042/bj2070641
Ahmad, S., Kumar, V., Ramanand, K. B. & Rao, N. M. Probing protein stability and proteolytic resistance by loop scanning: a comprehensive mutational analysis. Protein Sci. 21, 433–446. https://doi.org/10.1002/pro.2029 (2012).
doi: 10.1002/pro.2029
pubmed: 22246996
pmcid: 3375443
Neil, D. & Rawlings, G. S. S. Handbook of Proteolytic Enzymes 2, 1824 (Academic Press, Cambridge, 2013).
Rock, K. L., Reits, E. & Neefjes, J. Present yourself! By MHC class I and MHC class II molecules. Trends Immunol. 37, 724–737. https://doi.org/10.1016/j.it.2016.08.010 (2016).
doi: 10.1016/j.it.2016.08.010
pubmed: 27614798
pmcid: 5159193
Meiring, H. D., van der Heeft, E., ten Hove, G. J. & de Jong, A. P. J. M. Nanoscale LC–MS(n): technical design and applications to peptide and protein analysis. J. Sep. Sci. 25, 557–568. https://doi.org/10.1002/1615-9314(20020601)25:9<557::AID-JSSC557>3.0.CO;2-F (2002).
doi: 10.1002/1615-9314(20020601)25:9<557::AID-JSSC557>3.0.CO;2-F
Fraczkiewicz, R. & Braun, W. Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. J. Comput. Chem. 19, 319–333. https://doi.org/10.1002/(sici)1096-987x(199802)19:3<319::aid-jcc6>3.0.co;2-w (1998).
doi: 10.1002/(sici)1096-987x(199802)19:3<319::aid-jcc6>3.0.co;2-w
Frishman, D. & Argos, P. Knowledge-based protein secondary structure assignment. Proteins Struct. Funct. Bioinform. 23, 566–579. https://doi.org/10.1002/prot.340230412 (1995).
doi: 10.1002/prot.340230412