Bone turnover markers in serum but not in saliva correlate with bone mineral density.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
14 07 2020
Historique:
received: 03 10 2019
accepted: 10 06 2020
entrez: 16 7 2020
pubmed: 16 7 2020
medline: 23 1 2021
Statut: epublish

Résumé

Saliva was proposed as a diagnostic tool for systemic diseases. Here we determined the correlation of bone turnover markers in saliva, bone turnover markers in serum and bone mineral density in postmenopausal osteoporotic and healthy women. Forty postmenopausal osteoporotic and 40 age-matched healthy non-osteoporotic females were recruited for this case-control study. Serum and stimulated saliva levels of osteocalcin, N-terminal propeptide of type I collagen, bone-specific alkaline phosphatase and cross-linked-C-telopeptide of type I collagen were determined. Bone mineral density of the lumbar spine, proximal femur, and total hip were obtained. We show that osteocalcin and cross-linked-C-telopeptide of type I collagen (CTX) reached detectable levels in saliva while N-terminal propeptide of type I collagen and alkaline phosphatase were close or below the detection limit. Serum levels of bone turnover markers were significantly higher than saliva levels. Correlation analysis revealed a strong correlation of serum osteocalcin and, to a lesser extent, also serum CTX values with bone mineral density in lumbar spine, femoral neck, or total hip, respectively. There was, however, no significant correlation of bone mineral density with the respective bone turnover markers in saliva. There was a trend that saliva osteocalcin correlates with femoral neck (p = 0.16) or total hip (p = 0.06). There was also no association between serum and saliva bone turnover markers. This study reveals that saliva cannot replace the withdrawal of serum to evaluate bone metabolism.

Identifiants

pubmed: 32665632
doi: 10.1038/s41598-020-68442-z
pii: 10.1038/s41598-020-68442-z
pmc: PMC7360752
doi:

Substances chimiques

Biomarkers 0
Collagen Type I 0
Peptides 0
collagen type I trimeric cross-linked peptide 0
Osteocalcin 104982-03-8

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

11550

Subventions

Organisme : Austrian Science Fund FWF
ID : I 4072
Pays : Austria

Références

Seeman, E. & Delmas, P. D. Bone quality—the material and structural basis of bone strength and fragility. N. Engl. J. Med. 354, 2250–2261. https://doi.org/10.1056/NEJMra053077 (2006).
doi: 10.1056/NEJMra053077 pubmed: 16723616
Hernlund, E. et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch. Osteoporos. 8, 136. https://doi.org/10.1007/s11657-013-0136-1 (2013).
doi: 10.1007/s11657-013-0136-1 pubmed: 24113837 pmcid: 3880487
Black, D. M. & Rosen, C. J. Clinical practice. Postmenopausal osteoporosis. N. Engl. J. Med. 374, 254–262. https://doi.org/10.1056/NEJMcp1513724 (2016).
doi: 10.1056/NEJMcp1513724 pubmed: 26789873
Barton, D. W., Behrend, C. J. & Carmouche, J. J. Rates of osteoporosis screening and treatment following vertebral fracture. Spine J. https://doi.org/10.1016/j.spinee.2018.08.004 (2018).
doi: 10.1016/j.spinee.2018.08.004 pubmed: 30142455
Eastell, R. & Szulc, P. Use of bone turnover markers in postmenopausal osteoporosis. Lancet Diabetes Endocrinol. 5, 908–923. https://doi.org/10.1016/S2213-8587(17)30184-5 (2017).
doi: 10.1016/S2213-8587(17)30184-5 pubmed: 28689768
Szulc, P. et al. Use of CTX-I and PINP as bone turnover markers: National Bone Health Alliance recommendations to standardize sample handling and patient preparation to reduce pre-analytical variability. Osteoporos. Int. 28, 2541–2556. https://doi.org/10.1007/s00198-017-4082-4 (2017).
doi: 10.1007/s00198-017-4082-4 pubmed: 28631236
Bullon, P. et al. Serum, saliva, and gingival crevicular fluid osteocalcin: their relation to periodontal status and bone mineral density in postmenopausal women. J. Periodontol. 76, 513–519. https://doi.org/10.1902/jop.2005.76.4.513 (2005).
doi: 10.1902/jop.2005.76.4.513 pubmed: 15857090
McGehee, J. W. Jr. & Johnson, R. B. Biomarkers of bone turnover can be assayed from human saliva. J. Gerontol. A Biol. Sci. Med. Sci. 59, 196–200 (2004).
doi: 10.1093/gerona/59.3.B196
Pellegrini, G. G. et al. Salivary bone turnover markers in healthy pre- and postmenopausal women: daily and seasonal rhythm. Clin. Oral Investig. 16, 651–657. https://doi.org/10.1007/s00784-011-0538-7 (2012).
doi: 10.1007/s00784-011-0538-7 pubmed: 21431857
Johnson, R. B. et al. Effect of estrogen deficiency on skeletal and alveolar bone density in sheep. J. Periodontol. 73, 383–391. https://doi.org/10.1902/jop.2002.73.4.383 (2002).
doi: 10.1902/jop.2002.73.4.383 pubmed: 11990439
Pellegrini, G. G., Gonzales, C. M., Somoza, J. C., Friedman, S. M. & Zeni, S. N. Correlation between salivary and serum markers of bone turnover in osteopenic rats. J. Periodontol. 79, 158–165. https://doi.org/10.1902/jop.2008.070168 (2008).
doi: 10.1902/jop.2008.070168 pubmed: 18166106
Anil, S. et al. Xerostomia in geriatric patients: a burgeoning global concern. J. Investig. Clin. Dent. 7, 5–12. https://doi.org/10.1111/jicd.12120 (2016).
doi: 10.1111/jicd.12120 pubmed: 25175324
Billings, R. J., Proskin, H. M. & Moss, M. E. Xerostomia and associated factors in a community-dwelling adult population. Community Dent. Oral Epidemiol. 24, 312–316. https://doi.org/10.1111/j.1600-0528.1996.tb00868.x (1996).
doi: 10.1111/j.1600-0528.1996.tb00868.x pubmed: 8954216
Nederfors, T., Isaksson, R., Mornstad, H. & Dahlof, C. Prevalence of perceived symptoms of dry mouth in an adult Swedish population–relation to age, sex and pharmacotherapy. Community Dent. Oral Epidemiol. 25, 211–216. https://doi.org/10.1111/j.1600-0528.1997.tb00928.x (1997).
doi: 10.1111/j.1600-0528.1997.tb00928.x pubmed: 9192149
Dadas, A. & Janigro, D. The role and diagnostic significance of cellular barriers after concussive head trauma. Concussion 3, 53. https://doi.org/10.2217/cnc-2017-0019 (2018).
doi: 10.2217/cnc-2017-0019
Bierbaumer, L., Schwarze, U. Y., Gruber, R. & Neuhaus, W. Cell culture models of oral mucosal barriers: a review with a focus on applications, culture conditions and barrier properties. Tissue Barriers 6, 1479568. https://doi.org/10.1080/21688370.2018.1479568 (2018).
doi: 10.1080/21688370.2018.1479568 pubmed: 30252599 pmcid: 6389128
Chojnowska, S. et al. Human saliva as a diagnostic material. Adv. Med. Sci. 63, 185–191. https://doi.org/10.1016/j.advms.2017.11.002 (2018).
doi: 10.1016/j.advms.2017.11.002 pubmed: 29149764
Carrozza, C. et al. Clinical accuracy of midnight salivary cortisol measured by automated electrochemiluminescence immunoassay method in Cushing’s syndrome. Ann. Clin. Biochem. 47, 228–232. https://doi.org/10.1258/acb.2010.010020 (2010).
doi: 10.1258/acb.2010.010020 pubmed: 20406774
Garnero, P. et al. The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation. J. Bone Miner. Res. 18, 859–867. https://doi.org/10.1359/jbmr.2003.18.5.859 (2003).
doi: 10.1359/jbmr.2003.18.5.859 pubmed: 12733725
Koivula, M. K., Risteli, L. & Risteli, J. Measurement of aminoterminal propeptide of type I procollagen (PINP) in serum. Clin. Biochem. 45, 920–927. https://doi.org/10.1016/j.clinbiochem.2012.03.023 (2012).
doi: 10.1016/j.clinbiochem.2012.03.023 pubmed: 22480789
Magnusson, P. & Farley, J. R. Differences in sialic acid residues among bone alkaline phosphatase isoforms: a physical, biochemical, and immunological characterization. Calcif. Tissue Int. 71, 508–518. https://doi.org/10.1007/s00223-001-1137-4 (2002).
doi: 10.1007/s00223-001-1137-4 pubmed: 12232676
Karjalainen, S. et al. Effect of infancy-onset dietary intervention on salivary cholesterol of children: a randomized controlled trial. J. Dent. Res. 90, 868–873. https://doi.org/10.1177/0022034511405328 (2011).
doi: 10.1177/0022034511405328 pubmed: 21474838
Agha-Hosseini, F., Mirzaii-Dizgah, I., Mansourian, A. & Zabihi-Akhtechi, G. Serum and stimulated whole saliva parathyroid hormone in menopausal women with oral dry feeling. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 107, 806–810. https://doi.org/10.1016/j.tripleo.2009.01.024 (2009).
doi: 10.1016/j.tripleo.2009.01.024
Agha-Hosseini, F., Imanpour, M., Mirzaii-Dizgah, I. & Moosavi, M. S. Mucin 5B in saliva and serum of patients with oral lichen planus. Sci. Rep. 7, 12060. https://doi.org/10.1038/s41598-017-12157-1 (2017).
doi: 10.1038/s41598-017-12157-1 pubmed: 28935947 pmcid: 5608939
Haririan, H. et al. Comparative analysis of calcium-binding myeloid-related protein-8/14 in saliva and serum of patients with periodontitis and healthy individuals. J. Periodontol. 87, 184–192. https://doi.org/10.1902/jop.2015.150254 (2016).
doi: 10.1902/jop.2015.150254 pubmed: 26447749
Riis, J. L. et al. Adiponectin: serum-saliva associations and relations with oral and systemic markers of inflammation. Peptides 91, 58–64. https://doi.org/10.1016/j.peptides.2017.03.006 (2017).
doi: 10.1016/j.peptides.2017.03.006 pubmed: 28363793
Polz-Dacewicz, M., Strycharz-Dudziak, M., Dworzanski, J., Stec, A. & Kocot, J. Salivary and serum IL-10, TNF-alpha, TGF-beta, VEGF levels in oropharyngeal squamous cell carcinoma and correlation with HPV and EBV infections. Infect. Agent Cancer 11, 45. https://doi.org/10.1186/s13027-016-0093-6 (2016).
doi: 10.1186/s13027-016-0093-6 pubmed: 27547238 pmcid: 4992298
Aldahlawi, S., Youssef, A. R. & Shahabuddin, S. Evaluation of chemokine CXCL10 in human gingival crevicular fluid, saliva, and serum as periodontitis biomarker. J. Inflamm. Res. 11, 389–396. https://doi.org/10.2147/JIR.S177188 (2018).
doi: 10.2147/JIR.S177188 pubmed: 30464571 pmcid: 6216963
Tamimi, A. et al. Salivary neutrophil gelatinase-associated lipocalin sampling feasibility in acute renal colic. J. Endourol. 32, 566–571. https://doi.org/10.1089/end.2017.0864 (2018).
doi: 10.1089/end.2017.0864 pubmed: 29641349
Moori, M., Ghafoori, H. & Sariri, R. Nonenzymatic antioxidants in saliva of patients with systemic lupus erythematosus. Lupus 25, 265–271. https://doi.org/10.1177/0961203315605368 (2016).
doi: 10.1177/0961203315605368 pubmed: 26449364
Dekker, R. L. et al. Salivary biomarkers, oral inflammation, and functional status in patients with heart failure. Biol. Res. Nurs. 19, 153–161. https://doi.org/10.1177/1099800416665197 (2017).
doi: 10.1177/1099800416665197 pubmed: 27605566
Detzen, L., Chen, S. C. Y., Cheng, B., Papapanou, P. N. & Lalla, E. Increased levels of soluble CD163 in periodontitis patients. J. Clin. Periodontol. 44, 585–590. https://doi.org/10.1111/jcpe.12731 (2017).
doi: 10.1111/jcpe.12731 pubmed: 28419494
Guo, L. N., Yang, Y. Z. & Feng, Y. Z. Serum and salivary ferritin and Hepcidin levels in patients with chronic periodontitis and type 2 diabetes mellitus. BMC Oral Health 18, 63. https://doi.org/10.1186/s12903-018-0524-4 (2018).
doi: 10.1186/s12903-018-0524-4 pubmed: 29636044 pmcid: 5894201
Marinoski, J., Bokor-Bratic, M., Mitic, I. & Cankovic, M. Oral mucosa and salivary findings in non-diabetic patients with chronic kidney disease. Arch. Oral Biol. 102, 205–211. https://doi.org/10.1016/j.archoralbio.2019.04.021 (2019).
doi: 10.1016/j.archoralbio.2019.04.021 pubmed: 31078070
Stanescu, I. I. et al. Salivary biomarkers of inflammation in systemic lupus erythematosus. Ann. Anat. 219, 89–93. https://doi.org/10.1016/j.aanat.2018.02.012 (2018).
doi: 10.1016/j.aanat.2018.02.012 pubmed: 29621567
De, D. et al. Correlation between salivary and serum anti-desmoglein 1 and 3 antibody titres using ELISA and between anti-desmoglein levels and disease severity in pemphigus vulgaris. Clin. Exp. Dermatol. 42, 648–650. https://doi.org/10.1111/ced.13124 (2017).
doi: 10.1111/ced.13124 pubmed: 28543318
Haukioja, A., Tervahartiala, T., Sorsa, T. & Syrjanen, S. Persistent oral human papillomavirus (HPV) infection is associated with low salivary levels of matrix metalloproteinase 8 (MMP-8). J. Clin. Virol. 97, 4–9. https://doi.org/10.1016/j.jcv.2017.10.011 (2017).
doi: 10.1016/j.jcv.2017.10.011 pubmed: 29078079

Auteurs

Katharina Kerschan-Schindl (K)

Department of Physical Medicine, Rehabilitation and Occupational Therapy, Medical University of Vienna, Vienna, Austria.

Ewald Boschitsch (E)

Klimax, Ambulatorium für Klimakterium und Osteoporose, Vienna, Austria.

Rodrig Marculescu (R)

Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.

Reinhard Gruber (R)

Department of Oral Biology, School of Dentistry, Medical University of Vienna, Vienna, Austria. reinhard.gruber@meduniwien.ac.at.
Department of Periodontology, University of Bern, Bern, Switzerland. reinhard.gruber@meduniwien.ac.at.

Peter Pietschmann (P)

Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH