Electrophilicity Scale of Activated Amides:
17O NMR spectroscopy
N-C(O) activation
cross-coupling
transition-metal catalysis
twisted amides
Journal
Chemistry (Weinheim an der Bergstrasse, Germany)
ISSN: 1521-3765
Titre abrégé: Chemistry
Pays: Germany
ID NLM: 9513783
Informations de publication
Date de publication:
09 Dec 2020
09 Dec 2020
Historique:
received:
07
07
2020
pubmed:
16
7
2020
medline:
16
7
2020
entrez:
16
7
2020
Statut:
ppublish
Résumé
The structure and properties of amides are of tremendous interest in organic synthesis and biochemistry. Traditional amides are planar and the carbonyl group non-electrophilic due to n
Identifiants
pubmed: 32668046
doi: 10.1002/chem.202003213
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
16246-16250Informations de copyright
© 2020 Wiley-VCH GmbH.
Références
A. Greenberg, C. M. Breneman, J. F. Liebman, The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Materials Science, Wiley-VCH, Weinheim, 2003.
V. R. Pattabiraman, J. W. Bode, Nature 2011, 480, 471;
S. D. Roughley, A. M. Jordan, J. Med. Chem. 2011, 54, 3451;
A. A. Kaspar, J. M. Reichert, Drug Discovery Today 2013, 18, 807;
D. G. Brown, J. Boström, J. Med. Chem. 2016, 59, 4443.
C. R. Kemnitz, M. J. Loewen, J. Am. Chem. Soc. 2007, 129, 2521;
J. I. Mujika, J. M. Mercero, X. Lopez, J. Am. Chem. Soc. 2005, 127, 4445;
S. A. Glover, A. A. Rosser, J. Org. Chem. 2012, 77, 5492;
A. Greenberg, C. A. Venanzi, J. Am. Chem. Soc. 1993, 115, 6951.
M. Szostak, J. Aubé, Chem. Rev. 2013, 113, 5701;
R. Szostak, M. Szostak, Molecules 2019, 24, 274;
H. K. Hall Jr., A. El-Shekeil, Chem. Rev. 1983, 83, 549.
K. Tani, B. M. Stoltz, Nature 2006, 441, 731;
A. J. Kirby, I. V. Komarov, P. D. Wothers, N. Feeder, Angew. Chem. Int. Ed. 1998, 37, 785;
Angew. Chem. 1998, 110, 830;
I. V. Komarov, S. Yanik, A. Y. Ishchenko, J. E. Davies, J. M. Goodman, A. J. Kirby, J. Am. Chem. Soc. 2015, 137, 926;
M. Liniger, D. G. Vander Velde, M. K. Takase, M. Shahgholi, B. M. Stoltz, J. Am. Chem. Soc. 2016, 138, 969;
B. Sliter, J. Morgan, A. Greenberg, J. Org. Chem. 2011, 76, 2770.
C. Lizak, S. Gerber, S. Numao, M. Aebi, K. P. Locher, Nature 2011, 474, 350;
J. Liu, M. W. Albers, C. Chen, S. L. Schreiber, C. T. Walsh, Proc. Natl. Acad. Sci. USA 1990, 87, 2304;
M. Hosoya, Y. Otani, M. Kawahata, K. Yamaguchi, T. Ohwada, J. Am. Chem. Soc. 2010, 132, 14780.
S. Mahesh, K.-C. Tang, M. Raj, Molecules 2018, 23, 2615.
S. Yamada, Angew. Chem. Int. Ed. Engl. 1995, 34, 1113;
Angew. Chem. 1995, 107, 1224. Note that this study is limited to a very specific class of N-acyl-1,3-thiazolidine-2-thiones, and focuses on steric rather than electronic activation, which is much more general concept in amide bond chemistry.
H. Dahn, P. Pechy, V. Van Toan, Angew. Chem. Int. Ed. Engl. 1990, 29, 647;
Angew. Chem. 1990, 102, 681. Note that this study addresses carbonyl derivatives rather than amides.
V. Pace, W. Holzer, L. Ielo, S. Shi, G. Meng, M. Hanna, R. Szostak, M. Szostak, Chem. Commun. 2019, 55, 4423.
G. Meng, S. Shi, R. Lalancette, R. Szostak, M. Szostak, J. Am. Chem. Soc. 2018, 140, 727.
S. Shi, S. P. Nolan, M. Szostak, Acc. Chem. Res. 2018, 51, 2589;
H. Wang, S.-Q. Zhang, X. Hong, Chem. Commun. 2019, 55, 11330.
C. C. D. Wybon, C. Mensch, K. Hollanders, C. Gadals, W. A. Herrebout, S. Ballet, B. U. W. Maes, ACS Catal. 2018, 8, 203.
G. Li, M. Szostak, Nat. Commun. 2018, 9, 4165;
G. Li, C.-L. Ji, X. Hong, M. Szostak, J. Am. Chem. Soc. 2019, 141, 11161; For a recent excellent metal-free study, see:
Z.-B. Zhang, Y. Yang, Z.-X. Yu, J.-B. Xia, ACS Catal. 2020, 10, 5419.
Z.-B. Zhang, C.-L. Ji, C. Yang, J. Chen, X. Hong, J.-B. Xia, Org. Lett. 2019, 21, 1226.
M. B. Smith, J. March, Advanced Organic Chemistry, Wiley, New York, 2013.
I. P. Gerothanassis, Prog. Nucl. Magn. Reson. Spectrosc. 2010, 56, 95;
I. P. Gerothanassis, Prog. Nucl. Magn. Reson. Spectrosc. 2010, 57, 1.
R. Marek, A. Lycka, E. Kolehmainen, E. Sievanen, J. Tousek, Curr. Org. Chem. 2007, 11, 1154;
T. J. Bruno, P. D. N. Svoronos, Handbook of Basic Tables for Chemical Analysis, CRC Press, Boca Raton, 2003.
C. Jaeger, F. Hemmann, Solid State Nucl. Magn. Reson. Solid State Nucl. Mag. 2014, 57, 22;
G. A. Morris, M. J. Toohey, J. Magn. Reson. 1985, 63, 629.
S. Yamada, J. Org. Chem. 1996, 61, 941;
A. J. Bennet, V. Somayaji, R. S. Brown, B. D. Santarsiero, J. Am. Chem. Soc. 1991, 113, 7563.
Note that amides do not need to be tertiary in order to be useful in N-C cleavage reactions. For a recent study, see ref. [13].
We have been unable to record N,N-Ts/Ac and N,N-Ts/Boc amides. These amides are insufficiently stable to record the data.
Compound 16, N,N-4-CO2Et-2-py/H (5-CO2Et pyridine numbering) was selected as the 5 isomer rather than the 3 isomer because it is fully conjugated with the amide nitrogen. Ethyl group has been selected rather than tBu because it is more general and to facilitate the measurement. We have been unable to measure 17O NMR due to low solubility.
For recent elegant studies of amide distortion by peripheral metal coordination, see: S. Adachi, N. Kumagai, M. Shibasaki, Chem. Sci. 2017, 8, 85.