Effect of Hydrophilic Polymers on Complexation Efficiency of Cyclodextrins in Enhancing Solubility and Release of Diflunisal.
complexation
diflunisal
dissolution rate
hydrophilic polymers
hydroxypropyl β-cyclodextrin
β-cyclodextrin
Journal
Polymers
ISSN: 2073-4360
Titre abrégé: Polymers (Basel)
Pays: Switzerland
ID NLM: 101545357
Informations de publication
Date de publication:
15 Jul 2020
15 Jul 2020
Historique:
received:
10
06
2020
revised:
04
07
2020
accepted:
07
07
2020
entrez:
19
7
2020
pubmed:
19
7
2020
medline:
19
7
2020
Statut:
epublish
Résumé
The effects of three hydrophilic polymers, namely, carboxymethyl cellulose sodium (CMC-Na), polyvinyl alcohol (PVA) and poloxamer-188 (PXM-188) on the solubility and dissolution of diflunisal (DIF) in complexation with β-cyclodextrin (βCD) or hydroxypropyl β-cyclodextrin (HPβCD), were investigated. The kneading method was used at different drug to cyclodextrin weight ratios. Increases in solubility and drug release were observed with the DIF/βCD and DIF/HPβCD complexes. The addition of hydrophilic polymers at 2.5, 5.0 and 10.0% w/w markedly improved the complexation and solubilizing efficiency of βCD and HPβCD. Fourier-transform infrared (FTIR) showed that DIF was successfully included into the cyclodextrin cavity. Differential scanning calorimetry (DSC) and X-ray diffractometry (XRD) confirmed stronger drug amorphization and entrapment in the molecular cage of cyclodextrins. The addition of PVA, CMC-Na or PXM-188 reduced further the intensity of the DIF endothermic peak. Most of the sharp and intense peaks of DIF disappeared with the addition of hydrophilic polymers. In conclusion, PXM-188 at a weight ratio of 10.0% w/w was the best candidate in enhancing the solubility, stability and release of DIF.
Identifiants
pubmed: 32679660
pii: polym12071564
doi: 10.3390/polym12071564
pmc: PMC7408593
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Higher Education Commission, Pakistan
ID : 417-71915-2MD4-010 (50039076)
Références
J Pharm Sci. 2014 Feb;103(2):730-42
pubmed: 24311389
AAPS PharmSci. 2004 Mar 05;6(1):E7
pubmed: 15198508
Mater Sci Eng C Mater Biol Appl. 2019 Jul;100:48-61
pubmed: 30948084
PLoS One. 2017 Feb 28;12(2):e0172727
pubmed: 28245257
J Pharm Biomed Anal. 2008 Aug 5;47(4-5):704-9
pubmed: 18400444
Int J Pharm. 2001 Feb 1;213(1-2):75-81
pubmed: 11165095
Int J Pharm. 2007 Feb 1;329(1-2):1-11
pubmed: 17137734
Toxicol Pathol. 2008 Jan;36(1):30-42
pubmed: 18337219
Pharmacotherapy. 1983 Mar-Apr;3(2 Pt 2):3S-8S
pubmed: 6856488
Adv Drug Deliv Rev. 2007 Jul 30;59(7):645-66
pubmed: 17601630
Int J Pharm. 2003 Mar 6;253(1-2):97-110
pubmed: 12593941
J Pharm Biomed Anal. 1999 Mar;19(3-4):391-7
pubmed: 10704104
Curr Drug Targets. 2015;16(14):1645-9
pubmed: 25706254
J Pharm Sci. 2011 Oct;100(10):4281-94
pubmed: 21560130
Drug Discov Today. 2007 Dec;12(23-24):1068-75
pubmed: 18061887
ISRN Pharm. 2012;2012:195727
pubmed: 22830056
Curr Drug Deliv. 2004 Jan;1(1):65-72
pubmed: 16305371
Chem Pharm Bull (Tokyo). 2003 Aug;51(8):914-22
pubmed: 12913228
Drug Dev Ind Pharm. 2009 Dec;35(12):1452-9
pubmed: 19929204
J Pharm Sci. 2001 Jan;90(1):47-57
pubmed: 11064378
AAPS PharmSciTech. 2009;10(4):1206-15
pubmed: 19862626
Eur J Pharm Biopharm. 2000 Jul;50(1):47-60
pubmed: 10840192
J Pharm Pharmacol. 2008 Nov;60(11):1433-9
pubmed: 18957163
Drug Dev Ind Pharm. 2012 Jun;38(6):689-96
pubmed: 22010782
Carbohydr Polym. 2013 Oct 15;98(1):784-92
pubmed: 23987413
Bioorg Med Chem. 2009 Apr 1;17(7):2718-23
pubmed: 19282187
Eur J Pharm Sci. 2001 May;13(2):187-94
pubmed: 11297903
Eur J Drug Metab Pharmacokinet. 1998 Apr-Jun;23(2):109-12
pubmed: 9725466
Biomed Res Int. 2015;2015:109563
pubmed: 26097842
Drug Dev Ind Pharm. 2009 Oct;35(10):1264-70
pubmed: 19555243
Eur J Pharm Sci. 1999 Mar;7(4):271-8
pubmed: 9971909
Biochem Biophys Res Commun. 2002 Oct 4;297(4):934-42
pubmed: 12359244
Int J Pharm. 2001 May 7;218(1-2):27-42
pubmed: 11337147
Pharm Res. 2012 Jul;29(7):1775-86
pubmed: 22322899
Colloids Surf B Biointerfaces. 2016 Apr 1;140:317-323
pubmed: 26764112