MR elastography frequency-dependent and independent parameters demonstrate accelerated decrease of brain stiffness in elder subjects.


Journal

European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774

Informations de publication

Date de publication:
Dec 2020
Historique:
received: 20 11 2019
accepted: 30 06 2020
revised: 10 05 2020
pubmed: 20 7 2020
medline: 7 4 2021
entrez: 20 7 2020
Statut: ppublish

Résumé

To analyze the mechanical properties in different regions of the brain in healthy adults in a wide age range: 26 to 76 years old. We used a multifrequency magnetic resonance elastography (MRE) protocol to analyze the effect of age on frequency-dependent (storage and loss moduli, G' and G″, respectively) and frequency-independent parameters (μ The annual change rate ranged from - 0.32 to - 0.36% for G' and - 0.43 to - 0.55% for G″ for the cerebral parenchyma, cortical GM, and WM. For the subcortical GM, changes in G' ranged from - 0.18 to - 0.23%, and G″ changed - 0.43%. Interestingly, males exhibited decreased elasticity, while females exhibited decreased viscosity with respect to age in some regions of subcortical GM. Significantly decreased values were also found in subjects over 60 years old. Values of G' and G″ at 60 Hz and the frequency-independent μ • We used a multifrequency MRE protocol to assess changes in the mechanical properties of the brain with age. • Frequency-dependent (storage moduli G' and loss moduli G″) and frequency-independent (μ

Identifiants

pubmed: 32683552
doi: 10.1007/s00330-020-07054-7
pii: 10.1007/s00330-020-07054-7
pmc: PMC8121201
mid: NIHMS1613195
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6614-6623

Subventions

Organisme : Beijing Natural Science Foundation
ID : 7182044
Organisme : China Postdoctoral Science Foundation
ID : 2019M660717
Organisme : Beijing Hospitals Authority
ID : PX2018001
Organisme : National Natural Science Foundation of China
ID : 61801311
Organisme : NINDS NIH HHS
ID : R21 NS111415
Pays : United States
Organisme : Beijing Hospitals Authority Youth Programme
ID : QML20180103
Organisme : Beijing Friendship Hospital, Capital Medical University
ID : YYZZ2017B01

Références

Ophir J, Alam SK, Garra B et al (1999) Elastography: ultrasonic estimation and imaging of the elastic properties of tissues. Proc Inst Mech Eng H 213:203–233
doi: 10.1243/0954411991534933
Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL (1995) Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269:1854–1857
Muthupillai R, Ehman RL (1996) Magnetic resonance elastography. Nat Med 2:601–603
doi: 10.1038/nm0596-601
Hiscox LV, Johnson CL, Barnhill E et al (2016) Magnetic resonance elastography (MRE) of the human brain: technique, findings and clinical applications. Phys Med Biol 61:R401–R437
doi: 10.1088/0031-9155/61/24/R401
Glaser KJ, Manduca A, Ehman RL (2012) Review of MR elastography applications and recent developments. J Magn Reson Imaging 36:757–774
doi: 10.1002/jmri.23597
Di Ieva A, Grizzi F, Rognone E et al (2010) Magnetic resonance elastography: a general overview of its current and future applications in brain imaging. Neurosurg Rev 33:137–145
doi: 10.1007/s10143-010-0249-6
Murphy MC, Huston J 3rd, Ehman RL (2019) MR elastography of the brain and its application in neurological diseases. Neuroimage 187:176–183
Yin Z, Romano AJ, Manduca A, Ehman RL, Huston JR 3rd (2018) Stiffness and beyond: what MR elastography can tell us about brain structure and function under physiologic and pathologic conditions. Top Magn Reson Imaging 27:305–318
Arani A, Murphy MC, Glaser KJ et al (2015) Measuring the effects of aging and sex on regional brain stiffness with MR elastography in healthy older adults. Neuroimage 111:59–64
doi: 10.1016/j.neuroimage.2015.02.016
Sack I, Jöhrens K, Würfel J, Braun J (2013) Structure-sensitive elastography: on the viscoelastic powerlaw behavior of in vivo human tissue in health and disease. Soft Matter 9:5672–5680
Takamura T, Motosugi U, Sasaki Y et al (2020) Influence of age on global and regional brain stiffness in young and middle-aged adults. J Magn Reson Imaging 51:727–733
doi: 10.1002/jmri.26881
McIlvain G, Schwarb H, Cohen NJ, Telzer EH, Johnson CL (2018) Mechanical properties of the in vivo adolescent human brain. Dev Cogn Neurosci 34:27–33
doi: 10.1016/j.dcn.2018.06.001
Hiscox LV, Johnson CL, McGarry MDJ et al (2018) High-resolution magnetic resonance elastography reveals differences in subcortical gray matter viscoelasticity between young and healthy older adults. Neurobiol Aging 65:158–167
doi: 10.1016/j.neurobiolaging.2018.01.010
Johnson CL, Schwarb H, McGarry MDJ et al (2016) Viscoelasticity of subcortical gray matter structures. Hum Brain Mapp 37:4221–4233
doi: 10.1002/hbm.23314
Sack I, Beierbach B, Wuerfel J et al (2009) The impact of aging and gender on brain viscoelasticity. Neuroimage 46:652–657
doi: 10.1016/j.neuroimage.2009.02.040
Bunevicius A, Schregel K, Sinkus R, Golby A, Patz S (2019) Review: MR elastography of brain tumors. Neuroimage Clin 25:102109
doi: 10.1016/j.nicl.2019.102109
Dittmann F, Hirsch S, Tzschätzsch H, Guo J, Braun J, Sack I (2016) In vivo wideband multifrequency MR elastography of the human brain and liver. Magn Reson Med 76:1116–1126
Feng Y, Clayton EH, Chang Y, Okamoto RJ, Bayly PV (2013) Viscoelastic properties of the ferret brain measured in vivo at multiple frequencies by magnetic resonance elastography. J Biomech 46:863–870
doi: 10.1016/j.jbiomech.2012.12.024
Klatt D, Hamhaber U, Asbach P, Braun J, Sack I (2007) Noninvasive assessment of the rheological behavior of human organs using multifrequency MR elastography: a study of brain and liver viscoelasticity. Phys Med Biol 52:7281–7294
doi: 10.1088/0031-9155/52/24/006
Kurt M, Wu L, Laksari K et al (2019) Optimization of a multifrequency magnetic resonance elastography protocol for the human brain. J Neuroimaging 29:440–446
Sack I, Streitberger KJ, Krefting D, Paul F, Braun J (2011) The influence of physiological aging and atrophy on brain viscoelastic properties in humans. PLoS One 6:e23451
Squarzoni P, Duran FLS, Busatto GF, Alves TCTF (2018) Reduced gray matter volume of the thalamus and hippocampal region in elderly healthy adults with no impact of APOE varepsilon4: a longitudinal voxel-based morphometry study. J Alzheimers Dis 62:757–771
doi: 10.3233/JAD-161036
Raz N, Lindenberger U, Rodrigue KM et al (2005) Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 15:1676–1689
doi: 10.1093/cercor/bhi044
Weickenmeier J, Kurt M, Ozkaya E, Wintermark M, Pauly KB, Kuhl E (2018) Magnetic resonance elastography of the brain: a comparison between pigs and humans. J Mech Behav Biomed Mater 77:702–710
Mehmet K, Han L, Kaveh L et al (2016) In vivo multi-frequency magnetic resonance elastography of the human brain: which frequencies matter? Biomedical Engineering Society Annual Meeting, Phoenix
Chartrain AG, Kurt M, Yao A et al (2019) Utility of preoperative meningioma consistency measurement with magnetic resonance elastography (MRE): a review. Neurosurg Rev 42:1–7
doi: 10.1007/s10143-017-0862-8
Murphy MC, Huston JR, Jack CR Jr et al (2011) Decreased brain stiffness in Alzheimer's disease determined by magnetic resonance elastography. J Magn Reson Imaging 34:494–498
Tzouriomazoyer N, Landeau B, Papathanassiou D et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273
doi: 10.1006/nimg.2001.0978
Oliphant TE, Manduca A, Ehman RL, Greenleaf JF (2001) Complex-valued stiffness reconstruction for magnetic resonance elastography by algebraic inversion of the differential equation. Magn Reson Med 45:299–310
doi: 10.1002/1522-2594(200102)45:2<299::AID-MRM1039>3.0.CO;2-O
Fung YC, Cowin SC (1994) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer Science+Business Media, Berlin
Munder T, Pfeffer A, Schreyer S et al (2018) MR elastography detection of early viscoelastic response of the murine hippocampus to amyloid beta accumulation and neuronal cell loss due to Alzheimer’s disease. J Magn Reson Imaging 47:105–114
doi: 10.1002/jmri.25741
Murphy MC, Jones DT, Jack CR Jr et al (2016) Regional brain stiffness changes across the Alzheimer’s disease spectrum. Neuroimage Clin 10:283–290
doi: 10.1016/j.nicl.2015.12.007
ElSheikh M, Arani A, Perry A et al (2017) MR elastography demonstrates unique regional brain stiffness patterns in dementias. AJR Am J Roentgenol 209:403–408
doi: 10.2214/AJR.16.17455
Streitberger KJ, Fehlner A, Pache F et al (2017) Multifrequency magnetic resonance elastography of the brain reveals tissue degeneration in neuromyelitis optica spectrum disorder. Eur Radiol 27:2206–2215
doi: 10.1007/s00330-016-4561-6
Huston JR 3rd, Murphy MC, Boeve BF et al (2016) Magnetic resonance elastography of frontotemporal dementia. J Magn Reson Imaging 43:474–478
Riek K, Millward JM, Hamann I et al (2012) Magnetic resonance elastography reveals altered brain viscoelasticity in experimental autoimmune encephalomyelitis. Neuroimage Clin 1:81–90
doi: 10.1016/j.nicl.2012.09.003
Weickenmeier J, Kurt M, Ozkaya E et al (2018) Brain stiffens post mortem. J Mech Behav Biomed Mater 84:88–98
doi: 10.1016/j.jmbbm.2018.04.009
Guo J, Bertalan G, Meierhofer D et al (2019) Brain maturation is associated with increasing tissue stiffness and decreasing tissue fluidity. Acta Biomater 99:433–442
doi: 10.1016/j.actbio.2019.08.036
Javid A, Wei Z, Carissa G et al (2019) Nonlinear dynamical behavior of the deep white matter during head impact. Phys Rev Appl. https://doi.org/10.1103/PhysRevApplied.12.014058
Laksari K, Kurt M, Babaee H, Kleiven S, Camarillo DR (2018) Mechanistic insights into human brain impact dynamics through modal analysis. Phys Rev Lett 120:138101
doi: 10.1103/PhysRevLett.120.138101
Johnson CL, Telzer EH (2018) Magnetic resonance elastography for examining developmental changes in the mechanical properties of the brain. Dev Cogn Neurosci 33:176–181
doi: 10.1016/j.dcn.2017.08.010

Auteurs

Han Lv (H)

Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
Department of Radiology, Stanford University, 300 Pasteur Drive, Room S047, Stanford, CA, 94305-5105, USA.

Mehmet Kurt (M)

Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.

Na Zeng (N)

National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.

Efe Ozkaya (E)

Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.

Fabiola Marcuz (F)

Department of Radiology, Stanford University, 300 Pasteur Drive, Room S047, Stanford, CA, 94305-5105, USA.

Lyndia Wu (L)

Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, V6S0K4, Canada.

Kaveh Laksari (K)

Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA.

David B Camarillo (DB)

Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.

Kim Butts Pauly (KB)

Department of Radiology, Stanford University, 300 Pasteur Drive, Room S047, Stanford, CA, 94305-5105, USA.

Zhenchang Wang (Z)

Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.

Max Wintermark (M)

Department of Radiology, Stanford University, 300 Pasteur Drive, Room S047, Stanford, CA, 94305-5105, USA. Max.Wintermark@gmail.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH