Ultralow-Transition-Energy Organic Complex on Graphene for High-Performance Shortwave Infrared Photodetection.

charge transfer complex graphene photodetection photogating shortwave infrared region

Journal

Advanced materials (Deerfield Beach, Fla.)
ISSN: 1521-4095
Titre abrégé: Adv Mater
Pays: Germany
ID NLM: 9885358

Informations de publication

Date de publication:
Sep 2020
Historique:
received: 17 04 2020
revised: 28 06 2020
pubmed: 21 7 2020
medline: 21 7 2020
entrez: 21 7 2020
Statut: ppublish

Résumé

Room-temperature, high-sensitivity, and broadband photodetection up to the shortwave infrared (SWIR) region is extremely significant for a wide variety of optoelectronic applications, including contamination identification, thermal imaging, night vision, agricultural inspection, and atmospheric remote sensing. Small-bandgap semiconductor-based SWIR photodetectors generally require deep cooling to suppress thermally generated charge carriers to achieve increased sensitivity. Meanwhile, the photogating effect can provide an alternative way to achieve superior photosensitivity without the need for cooling. The optical photogating effect originates from charge trapping of photoinduced carriers at defects or interfaces, resulting in an extremely high photogain (10

Identifiants

pubmed: 32686222
doi: 10.1002/adma.202002628
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2002628

Subventions

Organisme : NSFC
ID : 21673058
Organisme : NSFC
ID : 21822502
Organisme : Key Research Program of Frontier Sciences of CAS
ID : QYZDB-SSW-SYS031
Organisme : Strategic Priority Research Program of CAS
ID : XDB30000000

Informations de copyright

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Références

A. Rogalski, Infrared Detectors, CRC Press, Boca Raton, FL 2010.
D. Naczynski, M. Tan, M. Zevon, B. Wall, J. Kohl, A. Kulesa, S. Chen, C. Roth, R. Riman, P. Moghe, Nat. Commun. 2013, 4, 1.
D. J. Naczynski, C. Sun, S. Türkcan, C. Jenkins, A. L. Koh, D. Ikeda, G. Pratx, L. Xing, Nano Lett. 2015, 15, 96.
S. D. Jackson, Laser Photonics Rev. 2009, 3, 466.
G. J. Supran, K. W. Song, G. W. Hwang, R. E. Correa, J. Scherer, E. A. Dauler, Y. Shirasaki, M. G. Bawendi, V. Bulović, Adv. Mater. 2015, 27, 1437.
C. L. Tan, H. Mohseni, Nanophotonics 2018, 7, 169.
F. Zhuge, Z. Zheng, P. Luo, L. Lv, Y. Huang, H. Li, T. Zhai, Adv. Mater. Technol. 2017, 2, 1700005.
A. Rogalski, J. Antoszewski, L. Faraone, J. Appl. Phys. 2009, 105, 4.
J. Piotrowski, Opto-Electron. Rev. 2004, 12, 111.
G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. De Arquer, F. Gatti, F. H. Koppens, Nat. Nanotechnol. 2012, 7, 363.
J. O. Island, S. I. Blanter, M. Buscema, H. S. van der Zant, A. Castellanos-Gomez, Nano Lett. 2015, 15, 7853.
D. Kufer, G. Konstantatos, Nano Lett. 2015, 15, 7307.
C. Hu, D. Dong, X. Yang, K. Qiao, D. Yang, H. Deng, S. Yuan, J. Khan, Y. Lan, H. Song, Adv. Funct. Mater. 2017, 27, 1603605.
H. Huang, J. Wang, W. Hu, L. Liao, P. Wang, X. Wang, F. Gong, Y. Chen, G. Wu, W. Luo, Nanotechnology 2016, 27, 445201.
L. Shen, Y. Fang, Q. Dong, Z. Xiao, J. Huang, Appl. Phys. Lett. 2015, 106, 023301.
Z. Liu, D. Zhao, J. Ao, X. Chang, Y. Wang, J. Fu, M. Zhang, H. Wang, Opt. Express 2018, 26, 17092.
L. Tong, X. Huang, P. Wang, L. Ye, M. Peng, L. An, Q. Sun, Y. Zhang, G. Yang, Z. Li, F. Wang, Y. Wang, M. Motlag, W. Wu, G. J. Cheng, W. Hu, Nat. Commun. 2020, 11, 2308.
G. Wu, X. Wang, Y. Chen, S. Wu, B. Wu, Y. Jiang, H. Shen, T. Lin, Q. Liu, X. Wang, Adv. Mater. 2020, 32, 1907937.
N. Guo, L. Xiao, F. Gong, M. Luo, F. Wang, Y. Jia, H. Chang, J. Liu, Q. Li, Y. Wu, Adv. Sci. 2020, 7, 1901637.
L. Tu, R. Cao, X. Wang, Y. Chen, S. Wu, F. Wang, Z. Wang, H. Shen, T. Lin, P. Zhou, X. Meng, W. Hu, Q. Liu, J. Wang, M. Liu, J. Chu, Nat. Commun. 2020, 11, 101.
N. Huo, S. Gupta, G. Konstantatos, Adv. Mater. 2017, 29, 1606576.
X. Li, M. A. Iqbal, M. Xu, Y.-C. Wang, H. Wang, M. Ji, X. Wan, T. J. Slater, J. Liu, J. Liu, Nano Energy 2019, 57, 57.
Q. Nian, L. Gao, Y. Hu, B. Deng, J. Tang, G. J. Cheng, ACS Appl. Mater. Interfaces 2017, 9, 44715.
K. K. Manga, J. Wang, M. Lin, J. Zhang, M. Nesladek, V. Nalla, W. Ji, K. P. Loh, Adv. Mater. 2012, 24, 1697.
M. Cui, Y. Guo, Y. Zhu, H. Liu, W. Wen, J. Wu, L. Cheng, Q. Zeng, L. Xie, J. Phys. Chem. C 2018, 122, 7551.
S. H. Yu, Y. Lee, S. K. Jang, J. Kang, J. Jeon, C. Lee, J. Y. Lee, H. Kim, E. Hwang, S. Lee, ACS Nano 2014, 8, 8285.
M. A. Iqbal, M. Cui, A. Liaqat, M. Hossain, X. Wang, S. Hussain, C. Dang, H. Liu, W. Wen, J. Wu, Nanotechnology 2019, 30, 254003.
Y. Lee, S. H. Yu, J. Jeon, H. Kim, J. Y. Lee, H. Kim, J.-H. Ahn, E. Hwang, J. H. Cho, Carbon 2015, 88, 165.
J. Han, J. Wang, Chin. Phys. B 2019, 28, 017103.
F. P. G. de Arquer, A. Armin, P. Meredith, E. H. Sargent, Nat. Rev. Mater. 2017, 2, 16100.
H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, I. Salzmann, Nat. Commun. 2015, 6, 8560.
I. Salzmann, G. Heimel, M. Oehzelt, S. Winkler, N. Koch, Acc. Chem. Res. 2016, 49, 370.
T. W. Ng, M. F. Lo, M. K. Fung, W. J. Zhang, C. S. Lee, Adv. Mater. 2014, 26, 5569.
Q. Zhang, X. Liu, F. Jiao, S. Braun, M. J. Jafari, X. Crispin, T. Ederth, M. Fahlman, J. Mater. Chem. C 2017, 5, 275.
K. P. Goetz, D. Vermeulen, M. E. Payne, C. Kloc, L. E. McNeil, O. D. Jurchescu, J. Mater. Chem. C 2014, 2, 3065.
A. S. Jalilov, J. Lu, J. K. Kochi, J. Phys. Org. Chem. 2016, 29, 35.
J. Torrance, J. Vazquez, J. Mayerle, V. Lee, Phys. Rev. Lett. 1981, 46, 253.
H. Fang, W. Hu, Adv. Sci. 2017, 4, 1700323.
M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, A. Castellanos-Gomez, Chem. Soc. Rev. 2015, 44, 3691.
J. Torrance, A. Girlando, J. Mayerle, J. Crowley, V. Lee, P. Batail, S. LaPlaca, Phys. Rev. Lett. 1981, 47, 1747.
S. Benjamin, S. Pagola, Z. Huba, E. Carpenter, T. Abdel-Fattah, Synth. Met. 2011, 161, 996.
T. Morimoto, T. Miyamoto, H. Okamoto, Crystals 2017, 7, 132.
J.-i. Nishizawa, T. Tanno, T. Oohashi, H. Watanabe, Y. Oyama, Synth. Met. 2008, 158, 278.
A. Girlando, F. Marzola, C. Pecile, J. B. Torrance, J. Chem. Phys. 1983, 79, 1075.
H. Liu, Y. Liu, D. Zhu, J. Mater. Chem. 2011, 21, 3335.
A. A. Balandin, Nat. Nanotechnol. 2013, 8, 549.
A. Li, Q. Chen, P. Wang, Y. Gan, T. Qi, P. Wang, F. Tang, J. Z. Wu, R. Chen, L. Zhang, Adv. Mater. 2019, 31, 1805656.
M. Long, E. Liu, P. Wang, A. Gao, H. Xia, W. Luo, B. Wang, J. Zeng, Y. Fu, K. Xu, Nano Lett. 2016, 16, 2254.
L. Ye, P. Wang, W. Luo, F. Gong, L. Liao, T. Liu, L. Tong, J. Zang, J. Xu, W. Hu, Nano Energy 2017, 37, 53.
Z. Ni, L. Ma, S. Du, Y. Xu, M. Yuan, H. Fang, Z. Wang, M. Xu, D. Li, J. Yang, ACS Nano 2017, 11, 9854.
Hamamatsu Photonics K. K., Infrared Detectors, https://www.hamamatsu.com/eu/en/product/index.html (accessed: March2020).
VIGO System S.A., Infrared Detectors Catalogue, https://vigo.com.pl/en/products-vigo/ (accessed: March2020).

Auteurs

Muhammad Ahsan Iqbal (MA)

CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.
University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

Adeel Liaqat (A)

CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.
University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

Sabir Hussain (S)

CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.
University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

Xinsheng Wang (X)

CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.
University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

Misbah Tahir (M)

CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.
University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

Zunaira Urooj (Z)

CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.
University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

Liming Xie (L)

CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.
University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

Classifications MeSH