Endpoint in ovarian cancer xenograft model predicted by nighttime motion metrics.
Journal
Lab animal
ISSN: 1548-4475
Titre abrégé: Lab Anim (NY)
Pays: United States
ID NLM: 0417737
Informations de publication
Date de publication:
08 2020
08 2020
Historique:
received:
23
09
2019
accepted:
08
06
2020
pubmed:
22
7
2020
medline:
30
4
2021
entrez:
22
7
2020
Statut:
ppublish
Résumé
Despite several therapeutics showing promise in nonclinical studies, survival from ovarian cancer remains poor. New technologies are urgently needed to optimize the translation of nonclinical studies into clinical successes. While most nonclinical settings utilize subjective measures of physiological parameters, which can hamper the accuracy of the results, this study assessed the physical activity of mice in real time using an objective, non-invasive, cloud-based, digital vivarium monitoring platform. An initial range-finding study in which varying numbers of ovarian cancer cells were inoculated in mice was conducted to characterize disease progression using digital metrics such as motion and breathing rate. Data from the range-finding study were used to establish a motion threshold (MT) that might predict terminal endpoint. Using the MT, the efficacies of cisplatin and OS2966, an anti-CD29 antibody, were assessed. Results showed that MT predicted terminal endpoint significantly earlier than traditional parameters and correlated with therapeutic efficacy. Thus, continuous motion monitoring sensitively predicts terminal endpoint in nonclinical ovarian cancer models and could be applicable for drug efficacy testing.
Identifiants
pubmed: 32690932
doi: 10.1038/s41684-020-0594-1
pii: 10.1038/s41684-020-0594-1
doi:
Substances chimiques
Cisplatin
Q20Q21Q62J
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
227-232Références
Momenimovahed, Z., Tiznobaik, A., Taheri, S. & Salehiniya, H. Ovarian cancer in the world: epidemiology and risk factors. Int. J. Womens Health 11, 287–299 (2019).
doi: 10.2147/IJWH.S197604
Della Pepa, C. et al. Ovarian cancer standard of care: are there real alternatives? Chin. J. Cancer 34, 17–27 (2015).
doi: 10.5732/cjc.014.10274
Lim, M. A. et al. Development of the digital arthritis index, a novel metric to measure disease parameters in a rat model of rheumatoid arthritis. Front. Pharmacol. 8, 818 (2017).
doi: 10.3389/fphar.2017.00818
Zheng, W., Thorne, N. & McKew, J. C. Phenotypic screens as a renewed approach for drug discovery. Drug Discov. Today 18, 1067–1073 (2013).
doi: 10.1016/j.drudis.2013.07.001
Crabbe, J. C., Wahlsten, D. & Dudek, B. C. Genetics of mouse behavior: interactions with laboratory environment. Science 284, 1670–1672 (1999).
doi: 10.1126/science.284.5420.1670
van der Staay, F. J., Arndt, S. S. & Nordquist, R. E. Evaluation of animal models of neurobehavioral disorders. Behav. Brain Funct. 5, 11 (2009).
doi: 10.1186/1744-9081-5-11
Jayasundara, K. S., Keystone, E. C. & Parker, J. L. Risk of failure of a clinical drug trial in patients with moderate to severe rheumatoid arthritis. J. Rheumatol. 39, 2066–2070 (2012).
doi: 10.3899/jrheum.120005
Vincent, F. et al. Developing predictive assays: the phenotypic screening “rule of 3”. Sci. Transl. Med. 7, 293ps15 (2015).
doi: 10.1126/scitranslmed.aab1201
Herrmann, K. & Flecknell, P. The application of humane endpoints and humane killing methods in animal research proposals: a retrospective review. Altern. Lab. Anim. 46, 317–333 (2018).
doi: 10.1177/026119291804600606
Peng, Q. et al. Circulating microRNA and automated motion analysis as novel methods of assessing chemotherapy-induced peripheral neuropathy in mice. PLoS One 14, e0210995 (2019).
doi: 10.1371/journal.pone.0210995
Shaw, T. J., Senterman, M. K., Dawson, K., Crane, C. A. & Vanderhyden, B. C. Characterization of intraperitoneal, orthotopic, and metastatic xenograft models of human ovarian cancer. Mol. Ther. 10, 1032–1042 (2004).
doi: 10.1016/j.ymthe.2004.08.013
Jahangiri, A., Aghi, M. K. & Carbonell, W. S. β1 integrin: critical path to antiangiogenic therapy resistance and beyond. Cancer Res. 74, 3–7 (2014).
doi: 10.1158/0008-5472.CAN-13-1742
Carbonell, W. S., DeLay, M., Jahangiri, A., Park, C. C. & Aghi, M. K. β1 integrin targeting potentiates antiangiogenic therapy and inhibits the growth of bevacizumab-resistant glioblastoma. Cancer Res. 73, 3145–3154 (2013).
doi: 10.1158/0008-5472.CAN-13-0011
Blandin, A.-F. et al. β1 integrins as therapeutic targets to disrupt hallmarks of cancer. Front. Pharmacol. 6, 279 (2015).
doi: 10.3389/fphar.2015.00279
Dickreuter, E. et al. Targeting of β1 integrins impairs DNA repair for radiosensitization of head and neck cancer cells. Oncogene 35, 1353–1362 (2016).
doi: 10.1038/onc.2015.212
Fry, N. J. et al. N6-methyladenosine contributes to cellular phenotype in a genetically-defined model of breast cancer progression. Oncotarget 9, 31231–31243 (2018).
doi: 10.18632/oncotarget.25782
Case Study: Mouse Model of Liver Toxicity in the Vium Digital. Vium.com 2020 [accessed 2020 April 13]. http://www.vium.com/wp-content/uploads/2017/10/Liver-Tox-Case-Study-V5.pdf .
Case Study: Pseudomonas aeruginosa Model of Lung Infection in the Vium Digital Vivarium. Vium.com 2020 [accessed 2020 April 19]. https://www.vium.com/wp-content/uploads/2019/01/Lung-Infection-Jan-2019.pdf .
Paraquat Model of Lung Injury in the Vium Digital Vivarium. Vium.com 2020 [accessed 2020 April 19]. https://www.vium.com/wp-content/uploads/2018/06/Lung-Injury-V5.pdf
Phenotyping Mouse Models: Investigate Phenotypes in Inbred Mouse Strains or Mouse Models of Disease. Vium.com 2020 [accessed 2020 April 19]. https://www.vium.com/wp-content/uploads/2019/01/Phenotyping-Jan-2019.pdf .
Lengyel, E. Ovarian cancer development and metastasis. Am. J. Pathol. 177, 1053–1064 (2010).
doi: 10.2353/ajpath.2010.100105
Penet, M. F. et al. Ascites volumes and the ovarian cancer microenvironment. Front. Oncol. 8, 595 (2018).
doi: 10.3389/fonc.2018.00595
Konstantinopoulos, P. A. & Matulonis, U. A. Current status and evolution of preclinical drug development models of epithelial ovarian cancer. Front. Oncol. 3, 296 (2013).
doi: 10.3389/fonc.2013.00296