Ex vivo model of herpes simplex virus type I dendritic and geographic keratitis using a corneal active storage machine.
Aged
Aged, 80 and over
Cornea
/ diagnostic imaging
Herpesvirus 1, Human
/ pathogenicity
Host Microbial Interactions
Humans
Keratitis, Herpetic
/ diagnosis
Microscopy, Electron, Transmission
Middle Aged
Organ Culture Techniques
/ instrumentation
Organ Preservation
/ instrumentation
Slit Lamp Microscopy
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2020
2020
Historique:
received:
29
03
2020
accepted:
30
06
2020
entrez:
23
7
2020
pubmed:
23
7
2020
medline:
2
10
2020
Statut:
epublish
Résumé
Herpetic keratitis (HK) models using whole human corneas are essential for studying virus-host relationships, because of high species specificity and the role of interactions between corneal cell populations that cell culture cannot reproduce. Nevertheless, the two current corneal storage methods (hypothermia and organ culture (OC)) do not preserve corneas in good physiological condition, as they are characterized by epithelial abrasion, stromal oedema, and excessive endothelial mortality. To rehabilitate human corneas intended for scientific use, we used an active storage machine (ASM) that restores two physiological parameters that are essential for corneal homeostasis: intraocular pressure and storage medium renewal (21mmHg and 2.6 μL/min, respectively). ASM storage regenerates a normal multilayer epithelium in 2 weeks. We infected six pairs of corneas unsuitable for graft by inoculating the epithelium with herpes simplex virus type 1 (HSV-1), and compared each ASM-stored cornea with the other cornea stored in the same medium using the conventional OC method. Only corneas in the ASM developed a dendritic (n = 3) or geographic (n = 2) epithelial ulcer reproducing typical HSV-1-induced clinical lesions. Corneas in OC showed only extensive desquamations. None of the uninfected controls showed epithelial damage. Histology, immunohistochemistry, transmission electron microscopy and polymerase chain reaction on corneal tissue confirmed infection in all cases (excluding negative controls). The ASM provides an innovative ex vivo model of HK in whole human cornea that reproduces typical epithelial lesions.
Sections du résumé
BACKGROUND
Herpetic keratitis (HK) models using whole human corneas are essential for studying virus-host relationships, because of high species specificity and the role of interactions between corneal cell populations that cell culture cannot reproduce. Nevertheless, the two current corneal storage methods (hypothermia and organ culture (OC)) do not preserve corneas in good physiological condition, as they are characterized by epithelial abrasion, stromal oedema, and excessive endothelial mortality.
METHODS
To rehabilitate human corneas intended for scientific use, we used an active storage machine (ASM) that restores two physiological parameters that are essential for corneal homeostasis: intraocular pressure and storage medium renewal (21mmHg and 2.6 μL/min, respectively). ASM storage regenerates a normal multilayer epithelium in 2 weeks. We infected six pairs of corneas unsuitable for graft by inoculating the epithelium with herpes simplex virus type 1 (HSV-1), and compared each ASM-stored cornea with the other cornea stored in the same medium using the conventional OC method.
RESULTS
Only corneas in the ASM developed a dendritic (n = 3) or geographic (n = 2) epithelial ulcer reproducing typical HSV-1-induced clinical lesions. Corneas in OC showed only extensive desquamations. None of the uninfected controls showed epithelial damage. Histology, immunohistochemistry, transmission electron microscopy and polymerase chain reaction on corneal tissue confirmed infection in all cases (excluding negative controls).
CONCLUSIONS
The ASM provides an innovative ex vivo model of HK in whole human cornea that reproduces typical epithelial lesions.
Identifiants
pubmed: 32697805
doi: 10.1371/journal.pone.0236183
pii: PONE-D-20-06801
pmc: PMC7375596
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0236183Déclaration de conflit d'intérêts
Please note that PG and GT are inventors of the active storage machine on “patent US 20160029618A1” submitted by Jean Monnet University that covers “Medical device intended for long-term storage of a cornea, or for ex vivo experimentation on a human or animal cornea”. The other authors have no proprietary or commercial interest in any materials discussed in this article."I can confirm that this does not alter our adherence to PLOS ONE policies on sharing data and materials.
Références
J Biomed Biotechnol. 2012;2012:612316
pubmed: 23091352
Antimicrob Agents Chemother. 2012 Mar;56(3):1390-402
pubmed: 22203590
Invest Ophthalmol Vis Sci. 1984 Dec;25(12):1436-40
pubmed: 6392146
Prog Retin Eye Res. 2013 Jan;32:88-101
pubmed: 22944008
Cornea. 1984-1985;3(4):231-9
pubmed: 6599840
Dis Mon. 2014 Jun;60(6):239-46
pubmed: 24906668
Int Ophthalmol Clin. 2006 Spring;46(2):27-37
pubmed: 16770152
Antiviral Res. 2013 Oct;100(1):14-9
pubmed: 23860013
Am J Transplant. 2019 Jun;19(6):1641-1651
pubmed: 30589181
Cornea. 2009 May;28(4):421-5
pubmed: 19411961
Arch Ophthalmol. 2010 Sep;128(9):1178-83
pubmed: 20837803
Mol Vis. 2010 Nov 20;16:2476-86
pubmed: 21139972
J Vis Exp. 2012 Nov 03;(69):e3631
pubmed: 23149439
Invest Ophthalmol Vis Sci. 2013 Sep 27;54(9):6373-81
pubmed: 23989188
J Virol. 2014 Dec;88(23):13669-77
pubmed: 25231295
Ophthalmology. 2005 May;112(5):888-95
pubmed: 15878072
Yan Ke Xue Bao. 1998 Mar;14(1):48-51
pubmed: 12580077
Exp Eye Res. 2000 Jun;70(6):737-43
pubmed: 10843778
Arch Ophthalmol. 1989 Aug;107(8):1155-9
pubmed: 2787981
Mol Vis. 2015 Dec 30;21:1345-56
pubmed: 26788027
Cochrane Database Syst Rev. 2003;(3):CD002898
pubmed: 12917935
Mol Vis. 2011;17:3494-511
pubmed: 22219645
JAMA Ophthalmol. 2016 Feb;134(2):167-73
pubmed: 26633035
J Clin Virol. 2013 Sep;58(1):265-8
pubmed: 23702097
Acta Ophthalmol. 2018 Mar;96(2):e140-e146
pubmed: 29068175
Surv Ophthalmol. 2012 Sep;57(5):448-62
pubmed: 22542912
Ophthalmology. 2004 Aug;111(8):1534-8
pubmed: 15288984
J Virol. 1998 Jul;72(7):5343-50
pubmed: 9620987
JAMA. 2017 Dec 12;318(22):2177-2178
pubmed: 29049478
Acta Ophthalmol. 2018 May;96(3):e334-e340
pubmed: 29193851
Invest Ophthalmol Vis Sci. 2001 Jul;42(8):1757-61
pubmed: 11431439
Invest Ophthalmol Vis Sci. 2003 Jan;44(1):217-25
pubmed: 12506078
Transl Vis Sci Technol. 2014 Mar 27;3(2):2
pubmed: 24757592
Clin Dermatol. 1984 Apr-Jun;2(2):67-82
pubmed: 6100717
Front Biosci. 2002 Mar 01;7:d752-64
pubmed: 11861220
Invest Ophthalmol Vis Sci. 2017 Nov 1;58(13):5907-5917
pubmed: 29164231
Int Ophthalmol Clin. 1996 Summer;36(3):17-28
pubmed: 8989597
Invest Ophthalmol Vis Sci. 1999 Nov;40(12):2827-32
pubmed: 10549642
Antiviral Res. 2016 Aug;132:281-6
pubmed: 27424493
Prog Retin Eye Res. 2018 Sep;66:107-131
pubmed: 29698813
Invest Ophthalmol Vis Sci. 2014 Feb 24;55(2):1118-23
pubmed: 24508792
Graefes Arch Clin Exp Ophthalmol. 2015 Oct;253(10):1721-8
pubmed: 26047535
Sci Rep. 2017 Feb 15;7:42559
pubmed: 28198435
Transplantation. 2020 Jun;104(6):1159-1165
pubmed: 31895867
Antiviral Res. 2013 Nov;100(2):297-9
pubmed: 24021190
Viruses. 2017 Nov 18;9(11):
pubmed: 29156583