Capillary-Driven Flow Microfluidics Combined with Smartphone Detection: An Emerging Tool for Point-of-Care Diagnostics.
antimicrobial resistance
capillary action
capillary-driven flow
detections
lab-on-a-chip
microfluidics
point-of-care diagnostics
smartphone imaging
Journal
Diagnostics (Basel, Switzerland)
ISSN: 2075-4418
Titre abrégé: Diagnostics (Basel)
Pays: Switzerland
ID NLM: 101658402
Informations de publication
Date de publication:
22 Jul 2020
22 Jul 2020
Historique:
received:
27
06
2020
revised:
20
07
2020
accepted:
20
07
2020
entrez:
26
7
2020
pubmed:
28
7
2020
medline:
28
7
2020
Statut:
epublish
Résumé
Point-of-care (POC) or near-patient testing allows clinicians to accurately achieve real-time diagnostic results performed at or near to the patient site. The outlook of POC devices is to provide quicker analyses that can lead to well-informed clinical decisions and hence improve the health of patients at the point-of-need. Microfluidics plays an important role in the development of POC devices. However, requirements of handling expertise, pumping systems and complex fluidic controls make the technology unaffordable to the current healthcare systems in the world. In recent years, capillary-driven flow microfluidics has emerged as an attractive microfluidic-based technology to overcome these limitations by offering robust, cost-effective and simple-to-operate devices. The internal wall of the microchannels can be pre-coated with reagents, and by merely dipping the device into the patient sample, the sample can be loaded into the microchannel driven by capillary forces and can be detected via handheld or smartphone-based detectors. The capabilities of capillary-driven flow devices have not been fully exploited in developing POC diagnostics, especially for antimicrobial resistance studies in clinical settings. The purpose of this review is to open up this field of microfluidics to the ever-expanding microfluidic-based scientific community.
Identifiants
pubmed: 32708045
pii: diagnostics10080509
doi: 10.3390/diagnostics10080509
pmc: PMC7459612
pii:
doi:
Types de publication
Journal Article
Review
Langues
eng
Références
PLoS One. 2014 May 22;9(5):e95330
pubmed: 24854188
Anal Chem. 2012 Jan 17;84(2):487-515
pubmed: 22221172
Lab Chip. 2011 Aug 7;11(15):2618-24
pubmed: 21677945
Sci Adv. 2017 Mar 22;3(3):e1501645
pubmed: 28345028
Anal Chem. 2005 Oct 1;77(19):6494-9
pubmed: 16194118
Analyst. 2018 Nov 5;143(22):5339-5351
pubmed: 30327808
Nature. 2006 Jul 27;442(7101):368-73
pubmed: 16871203
J Biomed Nanotechnol. 2015 Feb;11(2):319-24
pubmed: 26349307
Micromachines (Basel). 2019 Sep 19;10(9):
pubmed: 31546811
Lab Chip. 2014 Aug 21;14(16):3056-63
pubmed: 24964209
Lab Chip. 2012 Apr 21;12(8):1522-6
pubmed: 22395813
Clin Biochem Rev. 2014 Aug;35(3):155-67
pubmed: 25336761
Langmuir. 2017 Dec 19;33(50):14220-14225
pubmed: 29161045
Lab Chip. 2009 Dec 7;9(23):3422-9
pubmed: 19904410
Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11293-8
pubmed: 25053808
Anal Chem. 2014 Mar 18;86(6):3131-7
pubmed: 24548044
Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):10111-6
pubmed: 23729815
Biomed Microdevices. 2016 Aug;18(4):68
pubmed: 27432321
Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18149-54
pubmed: 19826080
PLoS One. 2016 Feb 12;11(2):e0148797
pubmed: 26872134
Analyst. 2015 Aug 21;140(16):5609-18
pubmed: 26120601
Lab Chip. 2013 Jan 21;13(2):280-7
pubmed: 23172338
Trends Biotechnol. 2017 Dec;35(12):1129-1139
pubmed: 29153761
Lab Chip. 2016 Aug 7;16(15):2891-9
pubmed: 27374435
Lab Chip. 2010 Jul 21;10(14):1787-92
pubmed: 20445943
Science. 2018 Apr 27;360(6387):439-444
pubmed: 29449508
Bioengineering (Basel). 2016 Oct 09;3(4):
pubmed: 28952587
Trends Biotechnol. 2015 Nov;33(11):692-705
pubmed: 26463722
Science. 2013 Jan 4;339(6115):91-5
pubmed: 23288538
Langmuir. 2017 Mar 28;33(12):2949-2964
pubmed: 28274121
Biomicrofluidics. 2016 Oct 05;10(5):054113
pubmed: 27733894
Sci Rep. 2014 Aug 05;4:5953
pubmed: 25092261
Lab Chip. 2018 Aug 7;18(16):2323-2347
pubmed: 30010168
Essays Biochem. 2016 Jun 30;60(1):111-20
pubmed: 27365041
Biomicrofluidics. 2020 May 27;14(3):031503
pubmed: 32509049
Biosens Bioelectron. 2015 Aug 15;70:5-14
pubmed: 25775968
J Antimicrob Chemother. 2013 Dec;68(12):2710-7
pubmed: 23818283
J Lab Autom. 2014 Jun;19(3):258-66
pubmed: 23697894
Biomed Microdevices. 2018 Oct 29;20(4):92
pubmed: 30370472
Analyst. 2017 Mar 13;142(6):959-968
pubmed: 28232992
Lab Chip. 2012 Jan 7;12(1):204-8
pubmed: 22086459
Biofabrication. 2015 May 22;7(2):025007
pubmed: 26000798
Lab Chip. 2010 Oct 21;10(20):2710-9
pubmed: 20664845
Anal Chem. 2013 Jun 18;85(12):5892-9
pubmed: 23581968
Sci Transl Med. 2014 Dec 17;6(267):267ra174
pubmed: 25520395
Lab Chip. 2012 Nov 7;12(21):4523-32
pubmed: 22968495
Micromachines (Basel). 2020 Apr 05;11(4):
pubmed: 32260509
Sensors (Basel). 2016 Nov 02;16(11):
pubmed: 27827837
Anal Chem. 2013 Apr 16;85(8):3971-6
pubmed: 23445209
Lab Chip. 2012 Jun 21;12(12):2118-34
pubmed: 22344520
Sci Rep. 2017 May 16;7(1):1980
pubmed: 28512313
PLoS One. 2014 Aug 11;9(8):e104539
pubmed: 25111497
Biosens Bioelectron. 2018 Jul 1;110:78-88
pubmed: 29602034
Int J Food Microbiol. 1994 Nov;23(3-4):391-404
pubmed: 7873339
Lab Chip. 2018 Jan 16;18(2):276-284
pubmed: 29199733
Lab Chip. 2014 Aug 21;14(16):2918-28
pubmed: 24989886
Chimia (Aarau). 2017 Jun 28;71(6):385
pubmed: 28662743
Lab Chip. 2017 Mar 29;17(7):1206-1249
pubmed: 28251200
Lab Chip. 2009 Dec 7;9(23):3330-7
pubmed: 19904397
Lab Chip. 2014 Sep 7;14(17):3409-18
pubmed: 25007721
Biosensors (Basel). 2020 Apr 15;10(4):
pubmed: 32326641
IEEE Trans Biomed Circuits Syst. 2017 Apr;11(2):455-463
pubmed: 28320676
Biosens Bioelectron. 2017 Aug 15;94:643-650
pubmed: 28376397
Tuberculosis (Edinb). 2012 Nov;92(6):489-96
pubmed: 22954584
Micromachines (Basel). 2018 Aug 14;9(8):
pubmed: 30424336
Lab Chip. 2008 May;8(5):689-93
pubmed: 18432337
Lab Chip. 2013 Mar 7;13(5):947-54
pubmed: 23334753
Sci Rep. 2017 May 18;7(1):2124
pubmed: 28522808
Lab Chip. 2010 Nov 7;10(21):2944-51
pubmed: 20842296
Sci Rep. 2016 Dec 15;6:39203
pubmed: 27976700