Lactobacillus plantarum-Mediated Regulation of Dietary Aluminum Induces Changes in the Human Gut Microbiota: an In Vitro Colonic Fermentation Study.

16S rRNA sequencing Aluminum toxicity Gut microbiota Lactic acid bacteria Probiotic Short-chain fatty acids

Journal

Probiotics and antimicrobial proteins
ISSN: 1867-1314
Titre abrégé: Probiotics Antimicrob Proteins
Pays: United States
ID NLM: 101484100

Informations de publication

Date de publication:
04 2021
Historique:
pubmed: 28 7 2020
medline: 4 1 2022
entrez: 27 7 2020
Statut: ppublish

Résumé

The gut microbiota has been identified as a target of toxic metals and a potentially crucial mediator of the bioavailability and toxicity of these metals. In this study, we show that aluminum (Al) exposure, even at low dose, affected the growth of representative strains from the human intestine via pure culture experiments. In vitro, Lactobacillus plantarum CCFM639 could bind Al on its cell surface as shown by electron microscopy and energy dispersive X-ray analysis. The potential of L. plantarum CCFM639 to reverse changes in human intestine microbiota induced by low-dose dietary Al exposure was investigated using an in vitro colonic fermentation model. Batch fermenters were inoculated with fresh stool samples from healthy adult donors and supplemented with 86 mg/L Al and/or 10

Identifiants

pubmed: 32712897
doi: 10.1007/s12602-020-09677-0
pii: 10.1007/s12602-020-09677-0
doi:

Substances chimiques

Aluminum CPD4NFA903

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

398-412

Subventions

Organisme : Biotechnology and Biological Sciences Research Council
ID : BBS/OS/NW/000006
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BBS/E/F/00044453
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BBS/E/F/000PR10356
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BBS/E/F/00042241
Pays : United Kingdom

Références

Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312(5778):1355–1359. https://doi.org/10.1126/science.1124234
doi: 10.1126/science.1124234 pubmed: 16741115 pmcid: 3027896
Rosenfeld CS (2017) Gut dysbiosis in animals due to environmental chemical exposures. Front Cell Infect Microbiol 7:396. https://doi.org/10.3389/fcimb.2017.00396
doi: 10.3389/fcimb.2017.00396 pubmed: 28936425 pmcid: 5596107
Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307(5717):1915–1920. https://doi.org/10.1126/science.1104816
doi: 10.1126/science.1104816 pubmed: 15790844
Power SE, O'Toole PW, Stanton C, Ross RP, Fitzgerald GF (2014) Intestinal microbiota, diet and health. Br J Nutr 111(3):387–402. https://doi.org/10.1017/S0007114513002560
doi: 10.1017/S0007114513002560 pubmed: 23931069
Oluwaseun Alegbeleye O, Sant’Ana AS (2020) Understanding the public health burden of unconventional produce-associated enteropathogens. Curr Opin Food Sci 32:37–44. https://doi.org/10.1016/j.cofs.2020.01.008
doi: 10.1016/j.cofs.2020.01.008
Rooks MG, Garrett WS (2016) Gut microbiota, metabolites and host immunity. Nat Rev Immunol 16(6):341–352. https://doi.org/10.1038/nri.2016.42
doi: 10.1038/nri.2016.42 pubmed: 27231050 pmcid: 5541232
Aguilar F, Autrup H, Barlow S, Castle L, Crebelli R, Dekant W, Engel KH, Gontard N, Gott D, Grilli S, Gürtler R, Larsen JC, Leclercq C, Leblanc JC, Malcata FX, Mennes W, Milana MR, Pratt I, Rietjens I, Tobback P, Toldrá F (2008) Scientific opinion of the panel on food additives, flavourings, processing aids and food contact materials on a request from European commission on safety of aluminium from dietary intake. The EFSA Journal 754:1–34. https://doi.org/10.2903/j.efsa.2008.754
doi: 10.2903/j.efsa.2008.754
Vignal C, Desreumaux P, Body-Malapel M (2016) Gut: an underestimated target organ for aluminum. Morphologie 100(329):75–84. https://doi.org/10.1016/j.morpho.2016.01.003
doi: 10.1016/j.morpho.2016.01.003 pubmed: 26970682
Tinkov AA, Gritsenko VA, Skalnaya MG, Cherkasov SV, Aaseth J, Skalny AV (2018) Gut as a target for cadmium toxicity. Environ Pollut 235:429–434. https://doi.org/10.1016/j.envpol.2017.12.114
doi: 10.1016/j.envpol.2017.12.114 pubmed: 29310086
Zhai Q, Li T, Yu L, Xiao Y, Feng S, Wu J, Zhao J, Zhang H, Chen W (2017) Effects of subchronic oral toxic metal exposure on the intestinal microbiota of mice. Sci Bull 110(4):501–513. https://doi.org/10.1016/j.scib.2017.01.031
doi: 10.1016/j.scib.2017.01.031
Breton J, Daniel C, Dewulf J, Pothion S, Froux N, Sauty M, Thomas P, Pot B, Foligné B (2013) Gut microbiota limits heavy metals burden caused by chronic oral exposure. Toxicol Lett 222(2):132–138. https://doi.org/10.1016/j.toxlet.2013.07.021
doi: 10.1016/j.toxlet.2013.07.021 pubmed: 23916686
Claus SP, Ellero SL, Berger B, Krause L, Bruttin A, Molina J, Paris A, Want EJ, de Waziers I, Cloarec O, Richards SE, Wang Y, Dumas ME, Ross A, Rezzi S, Kochhar S, Van Bladeren P, Lindon JC, Holmes E, Nicholson JK (2011) Colonization-induced host-gut microbial metabolic interaction. MBio 2(2):e00271–e00210. https://doi.org/10.1128/mBio.00271-10
doi: 10.1128/mBio.00271-10 pubmed: 21363910 pmcid: 3045766
Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11(8):506–514. https://doi.org/10.1038/nrgastro.2014.66
doi: 10.1038/nrgastro.2014.66 pubmed: 24912386
Behera SS, Panda SK (2020) Ethnic and industrial probiotic foods and beverages: efficacy and acceptance. Curr Opin Food Sci 32:29–36. https://doi.org/10.1016/j.cofs.2020.01.006
doi: 10.1016/j.cofs.2020.01.006
Roobab U, Batool Z, Manzoor M, Shabbir MA, Khan MR, Aadil R (2020) Sources, formulations, advanced delivery and health benefits of probiotics. Curr Opin Food Sci 32:17–28. https://doi.org/10.1016/j.cofs.2020.01.003
doi: 10.1016/j.cofs.2020.01.003
Zucko J, Starcevic A, Diminic J, Oros D, Mortazavian AM, Putnik P (2020) Probiotic - friend or foe? Curr Opin Food Sci 32:45–49. https://doi.org/10.1016/j.cofs.2020.01.007
doi: 10.1016/j.cofs.2020.01.007
Sarfraz F, Farooq U, Shafi A, Hayat Z, Akram K, Rehman HU (2019) Hypolipidaemic effects of synbiotic yoghurt in rabbits. Int J Dairy Technol 72(4):545–550. https://doi.org/10.1111/1471-0307.12618
doi: 10.1111/1471-0307.12618
Lee CS, Lee SH, Kim SH (2020) Bone-protective effects of Lactobacillus plantarum B719-fermented milk product. Int J Dairy Technol. https://doi.org/10.1111/1471-0307.12701
Khorshidian N, Yousefi M, Shadnoush M, Siadat SD, Mohammadi M, Mortazavian AM (2020) Using probiotics for mitigation of acrylamide in food products: a mini review. Curr Opin Food Sci 32:67–75. https://doi.org/10.1016/j.cofs.2020.01.011
doi: 10.1016/j.cofs.2020.01.011
Zhai Q, Tian F, Wang G, Zhao J, Liu X, Cross K, Zhang H, Narbad A, Chen W (2016) The cadmium binding characteristics of a lactic acid bacterium in aqueous solutions and its application for removal of cadmium from fruit and vegetable juices. RSC Adv 6(8):5990–5998. https://doi.org/10.1039/C5RA24843D
doi: 10.1039/C5RA24843D
Yu L, Zhai Q, Tian F, Liu X, Wang G, Zhao J, Zhang H, Narbad A, Chen W (2016) Potential of Lactobacillus plantarum CCFM639 in protecting against aluminum toxicity mediated by intestinal barrier function and oxidative stress. Nutrients 8(12):783. https://doi.org/10.3390/nu8120783
doi: 10.3390/nu8120783 pmcid: 5188438
Larsen N, Vogensen FK, Gobel RJ, Michaelsen KF, Forssten SD, Lahtinen SJ, Jakobsen M (2013) Effect of Lactobacillus salivarius Ls-33 on fecal microbiota in obese adolescents. Clin Nutr 32(6):935–940. https://doi.org/10.1016/j.clnu.2013.02.007
doi: 10.1016/j.clnu.2013.02.007 pubmed: 23510724
Veiga P, Pons N, Agrawal A, Oozeer R, Guyonnet D, Brazeilles R, Faurie JM, van Hylckama Vlieg JE, Houghton LA, Whorwell PJ, Ehrlich SD, Kennedy SP (2014) Changes of the human gut microbiome induced by a fermented milk product. Sci Rep 4:6328. https://doi.org/10.1038/srep06328
doi: 10.1038/srep06328 pubmed: 25209713 pmcid: 4160712
Yu L, Qiao N, Li T, Yu R, Zhai Q, Tian F, Zhao J, Zhang H, Chen W (2019) Dietary supplementation with probiotics regulates gut microbiota structure and function in Nile tilapia exposed to aluminum. PeerJ 7:e6963. https://doi.org/10.7717/peerj.6963
doi: 10.7717/peerj.6963 pubmed: 31198632 pmcid: 6553448
Kristek A, Wiese M, Heuer P, Kosik O, Schär MY, Soycan G, Alsharif S, Kuhnle G, Walton G, Spencer J (2019) Oat bran, but not its isolated bioactive β-glucans or polyphenols, have a bifidogenic effect in an in vitro fermentation model of the gut microbiota. Brit J Nutr 121(5):549–559. https://doi.org/10.1017/S0007114518003501
doi: 10.1017/S0007114518003501 pubmed: 30688188
Payne AN, Zihler A, Chassard C, Lacroix C (2012) Advances and perspectives in in vitro human gut fermentation modeling. Trends Biotechnol 30(1):17–25. https://doi.org/10.1016/j.tibtech.2011.06.011
doi: 10.1016/j.tibtech.2011.06.011 pubmed: 21764163
Likotrafiti E, Tuohy KM, Gibson GR, Rastall RA (2014) An in vitro study of the effect of probiotics, prebiotics and synbiotics on the elderly faecal microbiota. Anaerobe 27:50–55. https://doi.org/10.1016/j.anaerobe.2014.03.009
doi: 10.1016/j.anaerobe.2014.03.009 pubmed: 24685554
Gietl E, Mengerink W, Jd S, Gibson G (2012) Factors involved in the in vitro fermentability of short carbohydrates in static faecal batch cultures. Int J Carbohyd Chem 2012(1):1–10. https://doi.org/10.1155/2012/197809
doi: 10.1155/2012/197809
Lesmes U, Beards EJ, Gibson GR, Tuohy KM, Shimoni E (2008) Effects of resistant starch type III polymorphs on human colon microbiota and short chain fatty acids in human gut models. J Agric Food Chem 56(13):5415–5421. https://doi.org/10.1021/jf800284d
doi: 10.1021/jf800284d pubmed: 18543927
Yu L, Zhai Q, Liu X, Wang G, Zhang Q, Zhao J, Narbad A, Zhang H, Tian F, Chen W (2016) Lactobacillus plantarum CCFM639 alleviates aluminium toxicity. Appl Microbiol Biotechnol 100(4):1891–1900. https://doi.org/10.1007/s00253-015-7135-7
doi: 10.1007/s00253-015-7135-7 pubmed: 26610803
Parmanand BA, Kellingray L, Le Gall G, Basit AW, Fairweather-Tait S, Narbad A (2019) A decrease in iron availability to human gut microbiome reduces the growth of potentially pathogenic gut bacteria; an in vitro colonic fermentation study. J Nutr Biochem 67:20–27. https://doi.org/10.1016/j.jnutbio.2019.01.010
doi: 10.1016/j.jnutbio.2019.01.010 pubmed: 30831460 pmcid: 6546957
Zhai Q, Yu L, Li T, Zhu J, Zhang C, Zhao J, Zhang H, Chen W (2016) Effect of dietary probiotic supplementation on intestinal microbiota and physiological conditions of Nile tilapia (Oreochromis niloticus) under waterborne cadmium exposure. Anton Leeuw Int J G 110(4):501–513. https://doi.org/10.1007/s10482-016-0819-x
doi: 10.1007/s10482-016-0819-x
Granato D, Putnik P, Kovačević DB, Santos JS, Calado V, Rocha RS, Cruz AGD, Jarvis B, Rodionova OY, Pomerantsev A (2018) Trends in chemometrics: food authentication, microbiology, and effects of processing. Compr Rev Food Sci F 17(3):663–677. https://doi.org/10.1111/1541-4337.12341
doi: 10.1111/1541-4337.12341
Yu L, Zhai Q, Tian F, Liu X, Wang G, Zhao J, Zhang H, Narbad A, Chen W (2017) Lactobacillus plantarum CCFM639 can prevent aluminium-induced neural injuries and abnormal behaviour in mice. J Funct Foods 30:142–150. https://doi.org/10.1016/j.jff.2016.12.041
doi: 10.1016/j.jff.2016.12.041
Pina RG, Cervantes C (1996) Microbial interactions with aluminium. Biometals 9(3):311–316. https://doi.org/10.1007/Bf00817932
doi: 10.1007/Bf00817932 pubmed: 8696081
Zhou L, Tan Y, Huang L, Fortin C, Campbell PGC (2018) Aluminum effects on marine phytoplankton: implications for a revised Iron hypothesis (Iron-aluminum hypothesis). Biogeochemistry 139(2):123–137. https://doi.org/10.1007/s10533-018-0458-6
doi: 10.1007/s10533-018-0458-6
Williams CF, Walton GE, Jiang L, Plummer S, Garaiova I, Gibson GR (2015) Comparative analysis of intestinal tract models. Annu Rev Food Sci Technol 6:329–350. https://doi.org/10.1146/annurev-food-022814-015429
doi: 10.1146/annurev-food-022814-015429 pubmed: 25705934
Macfarlane GT, Gibson GR, Cummings JH (1992) Comparison of fermentation reactions in different regions of the human colon. J Appl Bacteriol 72(1):57–64. https://doi.org/10.1111/j.1365-2672.1992.tb04882.x
doi: 10.1111/j.1365-2672.1992.tb04882.x pubmed: 1541601
Boureau H, Hartmann L, Karjalainen T, Rowland I, Wilkinson MHF (2000) Models to study colonisation and colonisation resistance. Microb Ecol Health Dis 12(2):247–258. https://doi.org/10.1080/08910600050216246
doi: 10.1080/08910600050216246
Beards E, Tuohy K, Gibson G (2010) Bacterial, SCFA and gas profiles of a range of food ingredients following in vitro fermentation by human colonic microbiota. Anaerobe 16(4):420–425. https://doi.org/10.1016/j.anaerobe.2010.05.006
doi: 10.1016/j.anaerobe.2010.05.006 pubmed: 20553905
Qin C, Gong L, Zhang X, Wang Y, Wang Y, Wang B, Li Y, Li W (2018) Effect of Saccharomyces boulardii and Bacillus subtilis B10 on gut microbiota modulation in broilers. Anim Nutr 4(4):358–366. https://doi.org/10.1016/j.aninu.2018.03.004
doi: 10.1016/j.aninu.2018.03.004 pubmed: 30564755 pmcid: 6284224
Wu GF, Xiao XP, Feng PY, Xie FQ, Yu ZS, Yuan WZ, Liu P, Li XK (2017) Gut remediation: a potential approach to reducing chromium accumulation using Lactobacillus plantarum TW1-1. Sci Rep 7(1):15000. https://doi.org/10.1038/s41598-017-15216-9
doi: 10.1038/s41598-017-15216-9 pubmed: 29118411 pmcid: 5678100
Litvak Y, Byndloss MX, Tsolis RM, Baumler AJ (2017) Dysbiotic Proteobacteria expansion: a microbial signature of epithelial dysfunction. Curr Opin Microbiol 39:1–6. https://doi.org/10.1016/j.mib.2017.07.003
doi: 10.1016/j.mib.2017.07.003 pubmed: 28783509
Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA, LeLeiko N, Snapper SB, Bousvaros A, Korzenik J, Sands BE, Xavier RJ, Huttenhower C (2012) Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13(9):R79. https://doi.org/10.1186/gb-2012-13-9-r79
doi: 10.1186/gb-2012-13-9-r79 pubmed: 23013615 pmcid: 3506950
Torres J, Hu J, Seki A, Eisele C, Nair N, Huang R, Tarassishin L, Jharap B, Cote-Daigneault J, Mao Q, Mogno I, Britton GJ, Uzzan M, Chen CL, Kornbluth A, George J, Legnani P, Maser E, Loudon H, Stone J, Dubinsky M, Faith JJ, Clemente JC, Mehandru S, Colombel JF, Peter I (2019) Infants born to mothers with IBD present with altered gut microbiome that transfers abnormalities of the adaptive immune system to germ-free mice. Gut 0:1–10. https://doi.org/10.1136/gutjnl-2018-317855
Zeng MY, Inohara N, Nunez G (2017) Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunol 10(1):18–26. https://doi.org/10.1038/mi.2016.75
doi: 10.1038/mi.2016.75 pubmed: 27554295
Veiga P, Gallini CA, Beal C, Michaud M, Delaney ML, Dubois A, Khlebnikov A, Je VHV, Punit S, Glickman JN (2010) Bifidobacterium animalis subsp. lactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes. Proc Natl Acad Sci U S A 107(42):18132–18137. https://doi.org/10.1073/pnas.1011737107
doi: 10.1073/pnas.1011737107 pubmed: 20921388 pmcid: 2964251
Wei G, Lai Y, Wang G, Chen H, Li F, Wang S (2017) Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proc Natl Acad Sci U S A 114(23):5994–5999. https://doi.org/10.1073/pnas.1703546114
doi: 10.1073/pnas.1703546114 pubmed: 28533370 pmcid: 5468619
Hager CL, Isham N, Schrom KP, Chandra J, McCormick T, Miyagi M, Ghannoum MA (2019) Effects of a novel probiotic combination on pathogenic bacterial-fungal polymicrobial biofilms. mBio 10(2):e00338-19. https://doi.org/10.1128/mBio.00338-19
doi: 10.1128/mBio.00338-19 pubmed: 30940712 pmcid: 6456750
Volkmann ER (2017) Intestinal microbiome in scleroderma: recent progress. Curr Opin Rheumatol 29(6):553–560. https://doi.org/10.1097/BOR.0000000000000429
doi: 10.1097/BOR.0000000000000429 pubmed: 28719392
de Chambrun GP, Body-Malapel M, Frey-Wagner I, Djouina M, Deknuydt F, Atrott K, Esquerre N, Altare F, Neut C, Arrieta MC, Kanneganti TD, Rogler G, Colombel JF, Cortot A, Desreumaux P, Vignal C (2014) Aluminum enhances inflammation and decreases mucosal healing in experimental colitis in mice. Mucosal Immunol 7(3):589–601. https://doi.org/10.1038/mi.2013.78
doi: 10.1038/mi.2013.78
Jiang Q, He X, Zou Y, Ding Y, Li H, Chen H (2018) Altered gut microbiome promotes proteinuria in mice induced by adriamycin. AMB Express 8(1):31. https://doi.org/10.1186/s13568-018-0558-7
doi: 10.1186/s13568-018-0558-7 pubmed: 29492783 pmcid: 5833890
Chen J, Wright K, Davis JM, Jeraldo P, Marietta EV, Murray J, Nelson H, Matteson EL, Taneja V (2016) An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med 8(1):43. https://doi.org/10.1186/s13073-016-0299-7
doi: 10.1186/s13073-016-0299-7 pubmed: 27102666 pmcid: 4840970
Wang H, Li Y, Feng X, Li Y, Wang W, Qiu C, Xu J, Yang Z, Li Z, Zhou Q, Yao K, Wang H, Li Y, Li D, Dai W, Zheng Y (2016) Dysfunctional gut microbiota and relative co-abundance network in infantile eczema. Gut Pathog 8:36. https://doi.org/10.1186/s13099-016-0118-0
doi: 10.1186/s13099-016-0118-0 pubmed: 27453732 pmcid: 4957860
Kamada N, Seo SU, Chen GY, Nunez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13(5):321–335. https://doi.org/10.1038/nri3430
doi: 10.1038/nri3430 pubmed: 23618829 pmcid: 23618829
Jackson MA, Jeffery IB, Beaumont M, Bell JT, Clark AG, Ley RE, O'Toole PW, Spector TD, Steves CJ (2016) Signatures of early frailty in the gut microbiota. Genome Med 8(1):8. https://doi.org/10.1186/s13073-016-0262-7
doi: 10.1186/s13073-016-0262-7 pubmed: 26822992 pmcid: 4731918
Wang M, Wan J, Rong H, He F, Wang H, Zhou J, Cai C, Wang Y, Xu R, Yin Z, Zhou W (2019) Alterations in gut glutamate metabolism associated with changes in gut microbiota composition in children with autism spectrum disorder. mSystems 4(1):e00321-18. https://doi.org/10.1128/mSystems.00321-18
doi: 10.1128/mSystems.00321-18 pubmed: 30701194 pmcid: 6351726
Moreno-Perez D, Bressa C, Bailen M, Hamed-Bousdar S, Naclerio F, Carmona M, Perez M, Gonzalez-Soltero R, Montalvo-Lominchar MG, Carabana C, Larrosa M (2018) Effect of a protein supplement on the gut microbiota of endurance athletes: a randomized, controlled, double-blind pilot study. Nutrients 10(3):337. https://doi.org/10.3390/nu10030337
doi: 10.3390/nu10030337 pmcid: 5872755
Fernández J, Redondo-Blanco S, Gutiérrez-del-Río I, Miguélez EM, Villar CJ, Lombó F (2016) Colon microbiota fermentation of dietary prebiotics towards short-chain fatty acids and their roles as anti-inflammatory and antitumour agents: a review. J Funct Foods 25:511–522. https://doi.org/10.1016/j.jff.2016.06.032
doi: 10.1016/j.jff.2016.06.032
Dinh DM, Volpe GE, Duffalo C, Bhalchandra S, Tai AK, Kane AV, Wanke CA, Ward HD (2015) Intestinal microbiota, microbial translocation, and systemic inflammation in chronic HIV infection. J Infect Dis 211(1):19–27. https://doi.org/10.1093/infdis/jiu409
doi: 10.1093/infdis/jiu409 pubmed: 25057045
Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, Fu H, Xue X, Lu C, Ma J, Yu L, Xu C, Ren Z, Xu Y, Xu S, Shen H, Zhu X, Shi Y, Shen Q, Dong W, Liu R, Ling Y, Zeng Y, Wang X, Zhang Q, Wang J, Wang L, Wu Y, Zeng B, Wei H, Zhang M, Peng Y, Zhang C (2018) Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359(6380):1151–1156. https://doi.org/10.1126/science.aao5774
doi: 10.1126/science.aao5774 pubmed: 29590046

Auteurs

Leilei Yu (L)

State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, 214122, China.

Hui Duan (H)

School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.

Lee Kellingray (L)

Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK.

Shi Cen (S)

State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.

Fengwei Tian (F)

State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, 214122, China.

Jianxin Zhao (J)

State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.

Hao Zhang (H)

State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.
(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, China.

Gwénaëlle Le Gall (GL)

Department of Medicine, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.

Melinda J Mayer (MJ)

Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK.

Qixiao Zhai (Q)

State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China. zhaiqixiao@sina.com.
School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China. zhaiqixiao@sina.com.
International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, 214122, China. zhaiqixiao@sina.com.

Wei Chen (W)

State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.
Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology & Business University, Beijing, 100048, China.

Arjan Narbad (A)

International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, 214122, China.
Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH