Changes in prefrontal cerebral oxygenation and microvascular blood volume in hypoxia and possible association with acute mountain sickness.
Lake Louise scale
altitude
hypoxic exercise
near-infrared spectroscopy
Journal
Experimental physiology
ISSN: 1469-445X
Titre abrégé: Exp Physiol
Pays: England
ID NLM: 9002940
Informations de publication
Date de publication:
01 2021
01 2021
Historique:
received:
31
01
2020
accepted:
24
07
2020
pubmed:
28
7
2020
medline:
22
2
2022
entrez:
28
7
2020
Statut:
ppublish
Résumé
What is the central question of this study? The role of the cerebral haemodynamic response to either normobaric or hypobaric hypoxia in people susceptible to acute mountain sickness (AMS) is still under debate. Prefrontal cortex near-infrared spectroscopy-derived parameters were monitored in normobaric hypoxia at rest and during moderate-intensity exercise in AMS-prone and non-AMS individuals. What is the main finding and its importance? The AMS-prone individuals did not increase microvascular blood volume and showed lower prefrontal cerebral oxygenation in normobaric hypoxia both at rest and during exercise compared with non-AMS subjects, suggesting that these changes might underpin later development of AMS at altitude. The aim of this study was to evaluate changes in prefrontal cerebral oxygenation and microvascular blood volume during exercise in normobaric hypoxia and to investigate possible associations with the occurrence of acute mountain sickness (AMS) at altitude. Twenty-two healthy individuals (age, 26 ± 4 years; peak oxygen uptake, 42 ± 4 ml kg
Substances chimiques
Oxygen
S88TT14065
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
76-85Informations de copyright
© 2020 The Authors. Experimental Physiology © 2020 The Physiological Society.
Références
Ainslie, P. N., Barach, A., Murrell, C., Hamlin, M., Hellemans, J., & Ogoh, S. (2007). Alterations in cerebral autoregulation and cerebral blood flow velocity during acute hypoxia: Rest and exercise. American Journal of Physiology-Heart and Circulatory Physiology, 292, H976-H983.
Ainslie, P. N., & Subudhi, A. W. (2014). Cerebral blood flow at high altitude. High Altitude Medicine & Biology, 15, 133-140.
Ainslie, P. N., Wilson, M. H., & Imray, C. H. E. (2014). Cerebral circulation and brain. In E. R. Swenson & P. Bärtsch (Eds.), High altitude - human adaptation to hypoxia (pp. 141-170). New York: Springer-Verlag.
Bailey, D. M., Bärtsch, P., Knauth, M., & Baumgartner, R. W. (2009). Emerging concepts in acute mountain sickness and high-altitude cerebral edema: From the molecular to the morphological. Cellular and Molecular Life Sciences, 66, 3583-3594.
Bärtsch, P., & Bailey, D. M. (2014). Acute mountain sickness and high altitude cerebral oedema. In E. R. Swenson & P. Bärtsch (Eds.), High altitude - human adaptation to hypoxia (pp. 496). New York: Springer-Verlag.
Bärtsch, P., & Saltin, B. (2008). General introduction to altitude adaptation and mountain sickness. Scandinavian Journal of Medicine & Science in Sports, 18, 1-10.
Bärtsch, P., Swenson, E. R., Paul, A., Jülg, B., & Hohenhaus, E. (2002). Hypoxic ventilatory response, ventilation, gas exchange, and fluid balance in acute mountain sickness. High Altitude Medicine & Biology, 3, 361-376.
Bourdillon, N., Fan, J. L., & Kayser, B. (2014). Cerebral oxygenation during the Richalet hypoxia sensitivity test and cycling time-trial performance in severe hypoxia. European Journal of Applied Physiology, 114, 1037-1048.
Burtscher, M., Philadelphy, M., Gatterer, H., Burtscher, J., Faulhaber, M., Nachbauer, W., & Likar, R. (2019). Physiological responses in humans acutely exposed to high altitude (3480 m): Minute ventilation and oxygenation are predictive for the development of acute mountain sickness. High Altitude Medicine & Biology, 20, 192-197.
DiPasquale, D. M., Muza, S. R., Gunn, A. M., Li, Z., Zhang, Q., Harris, N. S., & Strangman, G. E. (2016). Evidence for cerebral edema, cerebral perfusion, and intracranial pressure elevations in acute mountain sickness. Brain and Behavior, 6, e00437.
Gao, C., Zhang, L., Luo, D., Liu, D., & Gong, H. (2016). PFC activity pattern during verbal WM task in healthy male and female subjects: A NIRS study. Advances in Experimental Medicine and Biology, 923, 187-193.
Hackett, P. H., & Roach, R. C. (2001). High-altitude illness. The New England Journal of Medicine, 345, 107-114.
Henson, L. C., Temp, J. A., & Ward, D. S. (1998). Accuracy of a cerebral oximeter in healthy volunteers under conditions of isocapnic hypoxia. Anesthesiology, 88, 58-65.
Hoiland, R. L., Howe, C. A., Coombs, G. B., & Ainslie, P. N. (2018). Ventilatory and cerebrovascular regulation and integration at high-altitude. Clinical Autonomic Research, 28, 423-435.
Honigman, B., Koziol-McLain, J., Moore, L. G., Theis, M. K., Roach, R., Yip, R., & Houston, C. (1993). Acute mountain sickness in a general tourist population at moderate altitudes. Annals of Internal Medicine, 118, 587-592.
Imray, C. H. E., Myers, S. D., Pattinson, K. T. S., Bradwell, A. R., Chan, C. W., Harris, S., … Wright, A. D. (2005). Effect of exercise on cerebral perfusion in humans at high altitude. Journal of Applied Physiology, 99, 699-706.
Jensen, J. B., Wright, A. D., Lassen, N. A., Harvey, T. C., Winterborn, M. H., Raichle, M. E., & Bradwell, A. R. (1990). Cerebral blood flow in acute mountain sickness. Journal of Applied Physiology, 69, 430-433.
Kameyama, M., Fukuda, M., Uehara, T., & Mikuni, M. (2004). Sex and age dependencies of cerebral blood volume changes during cognitive activation: A multichannel near-infrared spectroscopy study. Neuroimage, 22, 1715-1721.
Kammerer, T., Faihs, V., Hulde, N., Bayer, A., Hübner, M., Brettner, F., … Schäfer, S. T. (2018). Changes of hemodynamic and cerebral oxygenation after exercise in normobaric and hypobaric hypoxia: Associations with acute mountain sickness. Annals of Occupational and Environmental Medicine, 30, 66.
Kriemler, S., Bürgi, F., Wick, C., Wick, B., Keller, M., Wiget, U., … Brunner-La Rocca, H.-P. (2014). Prevalence of acute mountain sickness at 3500 m within and between families: A prospective cohort study. High Altitude Medicine & Biology, 15, 28-38.
Lanfranchi, P. A., Colombo, R., Cremona, G., Baderna, P., Spagnolatti, L., Mazzuero, G., … Giannuzzi, P. (2005). Autonomic cardiovascular regulation in subjects with acute mountain sickness. American Journal of Physiology-Heart and Circulatory Physiology, 289, H2364-H2372.
Lawley, J. S., Alperin, N., Bagci, A. M., Lee, S. H., Mullins, P. G., Oliver, S. J., & Macdonald, J. H. (2014). Normobaric hypoxia and symptoms of acute mountain sickness: Elevated brain volume and intracranial hypertension. Annals of Neurology, 75, 890-898.
Li, T., Luo, Q., & Gong, H. (2010). Gender-specific hemodynamics in prefrontal cortex during a verbal working memory task by near-infrared spectroscopy. Behavioural Brain Research, 209, 148-153.
Liu, W., Liu, J., Lou, X., Zheng, D., Wu, B., Wang, D. J. J., & Ma, L. (2017). A longitudinal study of cerebral blood flow under hypoxia at high altitude using 3D pseudo-continuous arterial spin labeling. Scientific Reports, 7, 43246.
Loeppky, J. A., Icenogle, M. V., Charlton, G. A., Conn, C. A., Maes, D., Riboni, K., … Roach, R. C. (2008). Hypoxemia and acute mountain sickness: Which comes first? High Altitude Medicine & Biology, 9, 271-279.
Luks, A. M., Swenson, E. R., & Bärtsch, P. (2017). Acute high-altitude sickness. European Respiratory Review, 26, 160096.
Ogoh, S., & Ainslie, P. N. (2009). Cerebral blood flow during exercise: Mechanisms of regulation. Journal of Applied Physiology, 107, 1370-1380.
Peltonen, J. E., Paterson, D. H., Shoemaker, J. K., DeLorey, D. S., DuManoir, G. R., Petrella, R. J., & Kowalchuk, J. M. (2009). Cerebral and muscle deoxygenation, hypoxic ventilatory chemosensitivity and cerebrovascular responsiveness during incremental exercise. Respiratory Physiology & Neurobiology, 169, 24-35.
Porcelli, S., Marzorati, M., Lanfranconi, F., Vago, P., Pišot, R., & Grassi, B. (2010). Role of skeletal muscles impairment and brain oxygenation in limiting oxidative metabolism during exercise after bed rest. Journal of Applied Physiology, 109, 101-111.
Richalet, J. P., Larmignat, P., Poitrine, E., Letournel, M., & Canouï-Poitrine, F. (2012). Physiological risk factors for severe high-altitude illness: A prospective cohort study. American Journal of Respiratory and Critical Care Medicine, 185, 192-198.
Roach, R. C., Hackett, P. H., Oelz, O., Bärtsch, P., Luks, A. M., MacInnis, M. J., … The Lake Louise AMS Score Consensus Committee. (2018). The 2018 Lake Louise acute mountain sickness score. High Altitude Medicine & Biology, 19, 4-6.
Roach, R. C., & Hackett, P. H. (2001). Frontiers of hypoxia research: Acute mountain sickness. The Journal of Experimental Biology, 204, 3161-3170.
Schneider, M., Bernasch, D., Weymann, J., Holle, R., & Bärtsch, P. (2002). Acute mountain sickness: Influence of susceptibility, preexposure, and ascent rate. Medicine and Science in Sports and Exercise, 34, 1886-1891.
Schommer, K., Hammer, M., Hotz, L., Menold, E., Bärtsch, P., & Berger, M. M. (2012). Exercise intensity typical of mountain climbing does not exacerbate acute mountain sickness in normobaric hypoxia. Journal of Applied Physiology, 113, 1068-1074.
Severinghaus, J. W., Chiodi, H., Eger, E. I. II, Brandstater, B., & Hornbein, T. F. (1966). Cerebral blood flow in man at high altitude. Circulation Research, 19, 274-282.
Subudhi, A. W., Dimmen, A. C., & Roach, R. C. (2007). Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise. Journal of Applied Physiology, 103, 177-183.
Subudhi, A. W., Fan, J.-L., Evero, O., Bourdillon, N., Kayser, B., Julian, C. G., … Roach, R. C. (2014a). AltitudeOmics: Cerebral autoregulation during ascent, acclimatization, and re-exposure to high altitude and its relation with acute mountain sickness. Journal of Applied Physiology, 116, 724-729.
Subudhi, A. W., Fan, J.-L., Evero, O., Bourdillon, N., Kayser, B., Julian, C. G., … Roach, R. C. (2014b). AltitudeOmics: Effect of ascent and acclimatization to 5260 m on regional cerebral oxygen delivery. Experimental Physiology, 99, 772-781.
Subudhi, A. W., Lorenz, M. C., Fulco, C. S., & Roach, R. C. (2008). Cerebrovascular responses to incremental exercise during hypobaric hypoxia: Effect of oxygenation on maximal performance. American Journal of Physiology-Heart and Circulatory Physiology, 294, H164-H171.
Sullivan, G. M., & Feinn, R. (2012). Using effect size-or why the P value is not enough. Journal of Graduate Medical Education, 4, 279-282.
Van Osta, A., Moraine, J. J., Mélot, C., Mairbäurl, H., Maggiorini, M., & Naeije, R. (2005). Effects of high altitude exposure on cerebral hemodynamics in normal subjects. Stroke, 36, 557-560.
Verges, S., Rupp, T., Jubeau, M., Wuyam, B., Esteve, F., Levy, P., … Millet, G. Y. (2012). Cerebral perturbations during exercise in hypoxia. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 302, R903-R916.
Willie, C. K., Smith, K. J., Day, T. A., Ray, L. A., Lewis, N. C. S., Bakker, A., … Ainslie, P. N. (2014). Regional cerebral blood flow in humans at high altitude: Gradual ascent and 2 wk at 5,050 m. Journal of Applied Physiology, 116, 905-910.
Woodside, J. D. S., Gutowski, M., Fall, L., James, P. E., McEneny, J., Young, I. S., … Bailey, D. M. (2014). Systemic oxidative-nitrosative-inflammatory stress during acute exercise in hypoxia; implications for microvascular oxygenation and aerobic capacity. Experimental Physiology, 99, 1648-1662.