Batch-Learning Self-Organizing Map Identifies Horizontal Gene Transfer Candidates and Their Origins in Entire Genomes.

Antarctic environment Batch-Learning Self-Organizing Map Sphingomonas genome amino acid frequency convergent evolution horizontal gene transfer low-temperature adaptation oligonucleotide

Journal

Frontiers in microbiology
ISSN: 1664-302X
Titre abrégé: Front Microbiol
Pays: Switzerland
ID NLM: 101548977

Informations de publication

Date de publication:
2020
Historique:
received: 05 02 2020
accepted: 08 06 2020
entrez: 29 7 2020
pubmed: 29 7 2020
medline: 29 7 2020
Statut: epublish

Résumé

Horizontal gene transfer (HGT) has been widely suggested to play a critical role in the environmental adaptation of microbes; however, the number and origin of the genes in microbial genomes obtained through HGT remain unknown as the frequency of detected HGT events is generally underestimated, particularly in the absence of information on donor sequences. As an alternative to phylogeny-based methods that rely on sequence alignments, we have developed an alignment-free clustering method on the basis of an unsupervised neural network "Batch-Learning Self-Organizing Map (BLSOM)" in which sequence fragments are clustered based solely on oligonucleotide similarity without taxonomical information, to detect HGT candidates and their origin in entire genomes. By mapping the microbial genomic sequences on large-scale BLSOMs constructed with nearly all prokaryotic genomes, HGT candidates can be identified, and their origin assigned comprehensively, even for microbial genomes that exhibit high novelty. By focusing on two types of

Identifiants

pubmed: 32719664
doi: 10.3389/fmicb.2020.01486
pmc: PMC7350273
doi:

Types de publication

Journal Article

Langues

eng

Pagination

1486

Informations de copyright

Copyright © 2020 Abe, Akazawa, Toyoda, Niki and Baba.

Références

Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5685-9
pubmed: 1608980
Eukaryot Cell. 2003 Oct;2(5):1069-75
pubmed: 14555490
Nat Microbiol. 2017 Nov;2(11):1533-1542
pubmed: 28894102
Nucleic Acids Res. 2019 Jan 8;47(D1):D506-D515
pubmed: 30395287
ISME J. 2020 Feb;14(2):597-608
pubmed: 31712737
Nat Microbiol. 2016 Apr 11;1:16048
pubmed: 27572647
Biosci Biotechnol Biochem. 2011;75(3):466-72
pubmed: 21389627
Nat Rev Genet. 2015 Aug;16(8):472-82
pubmed: 26184597
Microbiol Mol Biol Rev. 2014 Mar;78(1):1-39
pubmed: 24600039
Bioinformatics. 2009 Jul 15;25(14):1754-60
pubmed: 19451168
Nat Genet. 2004 Jul;36(7):760-6
pubmed: 15208628
Nature. 2015 Jan 1;517(7532):77-80
pubmed: 25317564
Genome Biol. 2012 May 25;13(5):R39
pubmed: 22630137
Microbiome. 2017 Oct 17;5(1):140
pubmed: 29041958
Biomed Res Int. 2015;2015:506052
pubmed: 26495297
Genome Res. 2000 Nov;10(11):1719-25
pubmed: 11076857
Front Microbiol. 2017 May 29;8:944
pubmed: 28611746
Int J Syst Evol Microbiol. 2015 Sep;65(9):2955-9
pubmed: 26025946
Genome Announc. 2013 May 16;1(3):
pubmed: 23682148
ISME J. 2016 Dec;10(12):2787-2800
pubmed: 27482926
Int J Syst Evol Microbiol. 2009 Apr;59(Pt 4):719-23
pubmed: 19329595
Nucleic Acids Res. 1999 Dec 1;27(23):4636-41
pubmed: 10556321
Nucleic Acids Res. 2015 Jan;43(Database issue):D261-9
pubmed: 25428365
EMBO Rep. 2014 May;15(5):508-17
pubmed: 24671034
Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14332-7
pubmed: 16176988
Nat Microbiol. 2016 Sep 12;1(11):16160
pubmed: 27617693
Genome Biol Evol. 2014 Jan;6(1):133-48
pubmed: 24391155
Nat Rev Microbiol. 2005 Sep;3(9):679-87
pubmed: 16138096
Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):E4602-E4611
pubmed: 28533395
Nucleic Acids Res. 1997 Mar 1;25(5):955-64
pubmed: 9023104
Annu Rev Genet. 2012;46:341-58
pubmed: 22934638
ISME J. 2013 May;7(5):1003-15
pubmed: 23303373
J Vet Med Sci. 2019 Mar 20;81(3):401-410
pubmed: 30674747
Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10039-44
pubmed: 18632554
Nature. 2015 Jun 25;522(7557):431-8
pubmed: 26108852
BMC Biol. 2015 Nov 04;13:90
pubmed: 26537913
Int J Syst Evol Microbiol. 2001 Jul;51(Pt 4):1405-17
pubmed: 11491340
Bacteriol Rev. 1971 Jun;35(2):171-205
pubmed: 4998365
BMC Genomics. 2008 Mar 24;9:136
pubmed: 18366724
PLoS Comput Biol. 2007 Jan 12;3(1):e5
pubmed: 17222055
ISME J. 2011 Aug;5(8):1291-302
pubmed: 21346789
Appl Environ Microbiol. 1981 Apr;41(4):889-93
pubmed: 16345753
Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3801-6
pubmed: 10097118
Int J Syst Evol Microbiol. 2015 Dec;65(12):4644-4649
pubmed: 26410379
Int J Syst Evol Microbiol. 2017 Oct;67(10):4064-4068
pubmed: 28933318
Nucleic Acids Res. 2011 Jan;39(Database issue):D210-3
pubmed: 21071414
J Bacteriol. 2010 Nov;192(22):6101-2
pubmed: 20833805
Mol Biol Evol. 2016 Jul;33(7):1843-57
pubmed: 27189546
Extremophiles. 2000 Apr;4(2):83-90
pubmed: 10805562
J Bacteriol. 2011 Sep;193(18):5051-2
pubmed: 21725006
Gene. 1999 Sep 30;238(1):143-55
pubmed: 10570992
Mol Biol Evol. 2013 Dec;30(12):2725-9
pubmed: 24132122
Genome Announc. 2015 May 14;3(3):
pubmed: 25977415
J Mol Biol. 2004 Aug 13;341(3):713-21
pubmed: 15288781
Science. 2013 Mar 8;339(6124):1207-10
pubmed: 23471408
Genome Biol Evol. 2019 Oct 1;11(10):2750-2766
pubmed: 31504488
Nucleic Acids Res. 2019 Jan 8;47(D1):D607-D613
pubmed: 30476243
Mar Biotechnol (NY). 2007 May-Jun;9(3):293-304
pubmed: 17195087
Gene. 2001 Oct 3;276(1-2):89-99
pubmed: 11591475
Nucleic Acids Res. 2004 Jan 02;32(1):11-6
pubmed: 14704338
Extremophiles. 2007 Jul;11(4):637-46
pubmed: 17401540
Nat Rev Genet. 2008 Aug;9(8):605-18
pubmed: 18591983
Nat Rev Microbiol. 2011 Jun 13;9(7):543-55
pubmed: 21666709
Sci Rep. 2017 Apr 21;7:46484
pubmed: 28429731
PLoS One. 2012;7(5):e35968
pubmed: 22567121
J Theor Biol. 1985 Jan 21;112(2):333-43
pubmed: 2984477
Int J Syst Evol Microbiol. 2003 Sep;53(Pt 5):1253-1260
pubmed: 13130003
Annu Rev Genet. 1998;32:185-225
pubmed: 9928479
Nature. 2017 Jan 26;541(7638):536-540
pubmed: 28092920
PLoS One. 2010 Feb 08;5(2):e9109
pubmed: 20174598
Microorganisms. 2013 Nov 20;1(1):137-157
pubmed: 27694768
Mol Biol Evol. 1993 May;10(3):512-26
pubmed: 8336541
Cell. 2018 Mar 8;172(6):1181-1197
pubmed: 29522741
Genome Res. 2003 Apr;13(4):693-702
pubmed: 12671005
DNA Res. 2008 Dec;15(6):387-96
pubmed: 18940874
Mol Biol Evol. 2009 May;26(5):1163-9
pubmed: 19233962
J Bacteriol. 1947 Jun;53(6):673-84
pubmed: 16561324
Mol Phylogenet Evol. 2017 Feb;107:338-344
pubmed: 27894995
Biomed Res Int. 2016;2016:3164624
pubmed: 28074180
PLoS One. 2012;7(4):e35784
pubmed: 22563400
Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45
pubmed: 26553804
Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4489-94
pubmed: 17360551
Annu Rev Microbiol. 2016 Sep 8;70:279-97
pubmed: 27482743
Int J Syst Evol Microbiol. 2001 Mar;51(Pt 2):281-292
pubmed: 11321072
Appl Environ Microbiol. 1985 Jan;49(1):1-7
pubmed: 3883894
J Mol Biol. 1990 Oct 5;215(3):403-10
pubmed: 2231712
Nature. 2000 May 18;405(6784):299-304
pubmed: 10830951
Nucleic Acids Res. 2007;35(9):3100-8
pubmed: 17452365

Auteurs

Takashi Abe (T)

Department of Information Engineering, Faculty of Engineering, Niigata University, Niigata, Japan.

Yu Akazawa (Y)

Department of Information Engineering, Faculty of Engineering, Niigata University, Niigata, Japan.

Atsushi Toyoda (A)

Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan.
Advanced Genomics Center, National Institute of Genetics, Mishima, Japan.

Hironori Niki (H)

Microbial Physiology Laboratory, National Institute of Genetics, Mishima, Japan.

Tomoya Baba (T)

Advanced Genomics Center, National Institute of Genetics, Mishima, Japan.
Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Tokyo, Japan.

Classifications MeSH