Hybrid PET/MRI in non-small cell lung cancer (NSCLC) and lung nodules-a literature review.
Carcinoma, Non-Small-Cell Lung
/ diagnostic imaging
Fluorodeoxyglucose F18
Humans
Lung
/ pathology
Lung Neoplasms
/ diagnostic imaging
Magnetic Resonance Imaging
Neoplasm Staging
Positron Emission Tomography Computed Tomography
Positron-Emission Tomography
Sensitivity and Specificity
Tomography, X-Ray Computed
18F-FDG
Lung lesions
NSCLC
PET/CT
PET/MRI
Journal
European journal of nuclear medicine and molecular imaging
ISSN: 1619-7089
Titre abrégé: Eur J Nucl Med Mol Imaging
Pays: Germany
ID NLM: 101140988
Informations de publication
Date de publication:
02 2021
02 2021
Historique:
received:
18
12
2019
accepted:
07
07
2020
pubmed:
29
7
2020
medline:
29
5
2021
entrez:
29
7
2020
Statut:
ppublish
Résumé
The use of hybrid PET/MRI for clinical staging is growing in several cancer forms and, consequently, PET/MRI has also gained interest in the assessment of non-small cell lung cancer (NSCLC) and lung lesions. However, lung evaluation with PET/MRI is associated with challenges related to technical issues and diagnostic image quality. We, therefore, investigated the published literature on PET/MRI for clinical staging in NSCLC or lung nodule detection specifically addressing diagnostic accuracy and technical issues. The data originates from a systematic search performed in PubMed/MEDLINE, Embase, and Cochrane Library on hybrid PET/MRI in patients with cancer for a scoping review published earlier ( https://doi.org/10.1007/s00259-019-04402-8 ). Studies in English and German evaluating the diagnostic performance of hybrid PET/MRI for NSCLC or lung nodule detection in cancer patients were selected. Data reported in peer-reviewed journals without restrictions to year of publication were included. A total of 3138 publications were identified from which 116 published 2012-2018 were included. Of these, nine studies addressed PET/MRI in NSCLC (4) or lung nodule detection (5). Overall, PET/MRI did not provide advantages in preoperative T- and N-staging in NSCLC compared to PET/CT. The data on M-staging were too few for conclusions to be drawn. The lung nodule detection rate of PET/MRI was comparable to that of PET/CT for FDG-avid nodules larger than 10 mm, but the sensitivity of PET/MRI for detection of non-FDG-avid nodules smaller than 5 mm was low. PET/MRI did not provide advantages in T- and N-staging of NSCLC compared to PET/CT. PET/MRI had a comparable sensitivity for detection of FDG-avid lung nodules and nodules over 10 mm, but PET/CT yielded a higher detection rate in non FDG-avid lung nodules under 5 mm. With PET/MRI, the overall detection rate for lung nodules in various cancer types remains inferior to that of PET/CT due to the lower diagnostic performance of MRI than CT in the lungs.
Sections du résumé
BACKGROUND
The use of hybrid PET/MRI for clinical staging is growing in several cancer forms and, consequently, PET/MRI has also gained interest in the assessment of non-small cell lung cancer (NSCLC) and lung lesions. However, lung evaluation with PET/MRI is associated with challenges related to technical issues and diagnostic image quality. We, therefore, investigated the published literature on PET/MRI for clinical staging in NSCLC or lung nodule detection specifically addressing diagnostic accuracy and technical issues.
METHODS
The data originates from a systematic search performed in PubMed/MEDLINE, Embase, and Cochrane Library on hybrid PET/MRI in patients with cancer for a scoping review published earlier ( https://doi.org/10.1007/s00259-019-04402-8 ). Studies in English and German evaluating the diagnostic performance of hybrid PET/MRI for NSCLC or lung nodule detection in cancer patients were selected. Data reported in peer-reviewed journals without restrictions to year of publication were included.
RESULTS
A total of 3138 publications were identified from which 116 published 2012-2018 were included. Of these, nine studies addressed PET/MRI in NSCLC (4) or lung nodule detection (5). Overall, PET/MRI did not provide advantages in preoperative T- and N-staging in NSCLC compared to PET/CT. The data on M-staging were too few for conclusions to be drawn. The lung nodule detection rate of PET/MRI was comparable to that of PET/CT for FDG-avid nodules larger than 10 mm, but the sensitivity of PET/MRI for detection of non-FDG-avid nodules smaller than 5 mm was low.
CONCLUSION
PET/MRI did not provide advantages in T- and N-staging of NSCLC compared to PET/CT. PET/MRI had a comparable sensitivity for detection of FDG-avid lung nodules and nodules over 10 mm, but PET/CT yielded a higher detection rate in non FDG-avid lung nodules under 5 mm. With PET/MRI, the overall detection rate for lung nodules in various cancer types remains inferior to that of PET/CT due to the lower diagnostic performance of MRI than CT in the lungs.
Identifiants
pubmed: 32719914
doi: 10.1007/s00259-020-04955-z
pii: 10.1007/s00259-020-04955-z
doi:
Substances chimiques
Fluorodeoxyglucose F18
0Z5B2CJX4D
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
584-591Références
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A, et al. GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;2018. https://doi.org/10.3322/caac.21492 .
Gavra M, Syed R, Fraioli F, Afaq A, Bomanji J. PET/MRI in the upper abdomen. Semin Nucl Med. 2015. https://doi.org/10.1053/j.semnuclmed.2015.03.00 .
Catalano OA, Coutinho AM, Sahani DV, Vangel MG, Gee MS, Hahn PF, et al. Colorectal cancer staging: comparison of whole-body PET/CT and PET/MR. Abdom Radiol. 2017. https://doi.org/10.1053/j.semnuclmed.2015.03.002 .
Lee DH, Lee JM. Whole-body PET/MRI for colorectal cancer staging: is it the way forward? J Magn Reson Imaging. 2017. https://doi.org/10.1002/jmri.25337 .
de Barbosa F G, Queiroz MA, Nunes RF, Marin JFG, Buchpiguel CA, Cerri GG. Clinical perspectives of PSMA PET/MRI for prostate cancer. Clinics. 2018. https://doi.org/10.6061/clinics/2018/e586s
Milovanovic IS, Stjepanovic M, Mitrovic D. Distribution patterns of the metastases of the lung carcinoma in relation to histological type of the primary tumor: an autopsy study. Ann Thorac Med. 2017. https://doi.org/10.4103/atm.ATM_276_16 .
Popper HH. Progression and metastasis of lung cancer. Cancer Metastasis Rev. 2016. https://doi.org/10.1007/s10555-016-96180 .
Gould MK, Maclean CC, Kuschner WG, Rydzak CE, Owens DK. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. J Am Med Assoc. 2001. https://doi.org/10.1001/jama.285.7.914 .
Nomori H, Watanabe K, Ohtsuka T, Naruke T, Suemasu K, Uno K. Evaluation of F-18 fluorodeoxyglucose (FDG) PET scanning for pulmonary nodules less than 3 cm in diameter, with special reference to the CT images. Lung Cancer. 2004. https://doi.org/10.1016/j.lungcan.2004.01.009 .
Wild JM, Marshall H, Bock M, Schad LR, Jakob PM, Puderbach M, et al. MRI of the lung (1/3): methods. Insights Imaging. 2012. https://doi.org/10.1007/s13244-012-0176-x .
Biederer J, Beer M, Hirsch W, Wild J, Fabel M, Puderbach M, et al. MRI of the lung (2/3). Why... when ... how? Insights Imaging. 2012; https://doi.org/10.1007/s13244-011-0146-8
Morsing A, Hildebrandt MG, Vilstrup MH, Wallenius SE, Gerke O, Petersen H, et al. Hybrid PET/MRI in major cancers: a scoping review. Eur. J. Nucl. Med. Mol. Imaging. Springer Berlin Heidelberg; 2019. p. 2138–51. https://doi.org/10.1007/s00259-019-04402-8
Schaarschmidt BM, Grueneisen J, Metzenmacher M, Gomez B, Gauler T, Roesel C, et al. Thoracic staging with18F-FDG PET/MR in non-small cell lung cancer – does it change therapeutic decisions in comparison to18F-FDG PET/CT? Eur Radiol. 2017. https://doi.org/10.1007/s00330-016-4397-0 .
Lee SM, Goo JM, Park CM, Yoon SH, Paeng JC, Cheon GJ, et al. Preoperative staging of non-small cell lung cancer: prospective comparison of PET/MR and PET/CT. Eur Radiol. 2016. https://doi.org/10.1007/s00330-016-4255-0 .
Fraioli F, Screaton NJ, Janes SM, Win T, Menezes L, Kayani I, et al. Non-small-cell lung cancer resectability: diagnostic value of PET/MR. Eur J Nucl Med Mol Imaging. 2015. https://doi.org/10.1007/s00259-014-2873-9 .
Heusch P, Buchbender C, Kohler J, Nensa F, Gauler T, Gomez B, et al. Thoracic staging in lung cancer: prospective comparison of 18F-FDG PET/MR imaging and 18F-FDG PET/CT. J Nucl Med. 2014. https://doi.org/10.2967/jnumed.113.129825 .
Sawicki LM, Grueneisen J, Buchbender C, Schaarschmidt BM, Gomez B, Ruhlmann V, et al. Comparative performance of 18F-FDG PET/MRI and 18F-FDG PET/CT in detection and characterization of pulmonary lesions in 121 oncologic patients. J Nucl Med. 2016. https://doi.org/10.2967/jnumed.115.167486 .
Sawicki LM, Grueneisen J, Buchbender C, Schaarschmidt BM, Gomez B, Ruhlmann V, et al. Evaluation of the outcome of lung nodules missed on 18F-FDG PET/MRI compared with 18F-FDG PET/CT in patients with known malignancies. J Nucl Med. 2016. https://doi.org/10.2967/jnumed.115.162966 .
Raad RA, Friedman KP, Heacock L, Ponzo F, Melsaether A, Chandarana H. Outcome of small lung nodules missed on hybrid PET/MRI in patients with primary malignancy. J Magn Reson Imaging. 2016. https://doi.org/10.1002/jmri.25005 .
Rauscher I, Eiber M, Furst S, Souvatzoglou M, Nekolla SG, Ziegler SI, et al. PET/MR imaging in the detection and characterization of pulmonary lesions: technical and diagnostic evaluation in comparison to PET/CT. J Nucl Med. 2014. https://doi.org/10.2967/jnumed.113.129247 .
Chandarana H, Heacock L, Rakheja R, DeMello LR, Bonavita J, Block TK, et al. Pulmonary nodules in patients with primary malignancy: comparison of hybrid PET/MR and PET/CT imaging. Radiology. 2013. https://doi.org/10.1148/radiol.13130620 .
Kirchner J, Sawicki LM, Nensa F, Schaarschmidt BM, Reis H, Ingenwerth M, et al. Prospective comparison of 18F-FDG PET/MRI and 18F-FDG PET/CT for thoracic staging of non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2019. https://doi.org/10.1007/s00259-018-4109-x .
Martin O, Schaarschmidt BM, Kirchner J, Suntharalingam S, Grueneisen J, Demircioglu A, et al. PET/MRI versus PET/CT in whole-body staging: results from a unicenter observational study in 1003 subsequent examinations. J Nucl Med. 2019. https://doi.org/10.2967/jnumed.119.233940 .
Mayerhoefer ME, Prosch H, Beer L, Tamandl D, Beyer T, Hoeller C, et al. PET/MRI versus PET/CT in oncology: a prospective single-center study of 330 examinations focusing on implications for patient management and cost considerations. Eur J Nucl Med Mol Imaging. 2020;47:51–60. https://doi.org/10.1007/s00259-019-04452-y .
doi: 10.1007/s00259-019-04452-y
pubmed: 31410538
Brea TP, Raviña AR, Villamor JMC, Gómez AG, de Alegría AM, Valdèc)s L. Use of magnetic resonance imaging for N-staging in patients with non-small cell lung cancer. A systematic review. Arch Bronconeumol (English Ed. 2019;55:9–16. https://doi.org/10.1016/j.arbr.2018.03.013 .
Catalano OA, Rosen BR, Sahani DV, Hahn PF, Guimaraes AR, Vangel MG, et al. Clinical impact of PET / MR imaging in patients with cancer initial experience in 134 patients. Radiology. 2013;269:857–69. https://doi.org/10.1148/radiol.13131306/-/DC1 .
doi: 10.1148/radiol.13131306/-/DC1
pubmed: 24009348
Benjamin MS, Drucker EA, McLoud TC, Shepard JO. Small pulmonary nodules: detection at chest CT and outcome. Radiology. 2003. https://doi.org/10.1148/radiol.2262010556 .
Delso G, Voert E Ter, Barbosa FDG, Veit-Haibach P. Pitfalls and limitations in simultaneous PET/MRI. Semin. Nucl. Med. 2015. https://doi.org/10.1053/j.semnuclmed.2015.04.002 .
Biederer J, Hintze C, Fabel M. MRI of pulmonary nodules: technique and diagnostic value. Cancer Imaging. 2008. https://doi.org/10.1102/1470-7330 2008.0018.
Heye T, Ley S, Heussel CP, Dienemann H, Kauczor HU, Hosch W, et al. Detection and size of pulmonary lesions: how accurate is MRI? A prospective comparison of CT and MRI. Acta Radiol. 2012. https://doi.org/10.1258/ar.2011.110445 .
Boada FE, Koesters T, Block KT, Chandarana H. Improved detection of small pulmonary nodules through simultaneous MR/PET imaging. Magn Reson Imaging Clin N Am. 2017. https://doi.org/10.1016/j.mric.2016.12.009 .
Schleyer PJ, O’Doherty MJ, Barrington SF, Marsden PK. Retrospective data-driven respiratory gating for PET/CT. Phys Med Biol. 2009. https://doi.org/10.1088/0031-9155/54/7/005 .
Dewes P, Frellesen C, Al-Butmeh F, Albrecht MH, Scholtz JE, Metzger SC, et al. Comparative evaluation of non-contrast CAIPIRINHA-VIBE 3T-MRI and multidetector CT for detection of pulmonary nodules: in vivo evaluation of diagnostic accuracy and image quality. Eur J Radiol Elsevier Ireland Ltd. 2016;85:193–8. https://doi.org/10.1016/j.ejrad.2015.11.020 .
doi: 10.1016/j.ejrad.2015.11.020
Ohno Y, Koyama H, Yoshikawa T, Kishida Y, Seki S, Takenaka D, et al. Standard-, reduced-, and no-dose thin-section radiologic examinations: comparison of capability for nodule detection and nodule type assessment in patients suspected of having pulmonary nodules. Radiology. 2017. https://doi.org/10.1148/radiol.2017161037 .
Cha MJ, Park HJ, Paek MY, Stemmer A, Lee ES, Park S Bin, et al. Free-breathing ultrashort echo time lung magnetic resonance imaging using stack-of-spirals acquisition: a feasibility study in oncology patients. Magn Reson Imaging. 2018; https://doi.org/10.1016/j.mri.2018.05.002
Burris NS, Johnson KM, Larson PEZ, Hope MD, Nagle SK, Behr SC, et al. Detection of small pulmonary nodules with ultrashort echo time sequences in oncology patients by using a PET/MR system. Radiology. 2016. https://doi.org/10.1148/radiol.2015150489 .
Bae K, Jeon KN, Hwang MJ, Lee JS, Ha JY, Ryu KH, et al. Comparison of lung imaging using three-dimensional ultrashort echo time and zero echo time sequences: preliminary study. Eur Radiol European Radiology. 2019;29:2253–62. https://doi.org/10.1007/s00330-018-5889-x .
doi: 10.1007/s00330-018-5889-x
pubmed: 30547204