Survival of Lawsonia intracellularis in porcine peripheral blood monocyte-derived macrophages.


Journal

PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081

Informations de publication

Date de publication:
2020
Historique:
received: 31 03 2020
accepted: 15 07 2020
entrez: 1 8 2020
pubmed: 1 8 2020
medline: 30 9 2020
Statut: epublish

Résumé

Lawsonia intracellularis, an obligately intracellular enteric bacterium, infects intestinal epithelial cells, but may also be found within macrophages in the intestinal lamina propria of affected pigs. Macrophages play an important role in host defense against infectious agents, but the role of this cell in L. intracellularis infection is not well understood. The aim of this study was to evaluate the permissibility of macrophages to L. intracellularis infection in vitro. Pure culture of L. intracellularis was added to swine peripheral blood monocyte-derived macrophages. Viability of intracytoplasmic L. intracellularis was evaluated at different time points by transmission electron microscopy (TEM). Potential replication of L. intracellularis in macrophages was also evaluated by qPCR. By TEM, phagocytosis L. intracellularis within of phagolysosomes were observed 1-hour post-infection (hpi) and bacterial structures in binary fission at 48 hpi. The number of intracellular bacteria was determined at 1, 4, 24, 48, and 72 hpi by qPCR in infected macrophages and compared to the number of intracellular bacteria from culture in McCoy cells. In both cell lines, the amount of L. intracellularis was decreased at 4 hpiand increased at 24 hpi. The number of intracellular bacteria continued to increase in McCoy cells over time. This is the first study showing interaction, survival and propagation of L. intracellularis in macrophages. These findings are critical to establish an experimental model for future studies of the pathogenesis of porcine proliferative enteropathy and the potential persistence of L. intracellularis in macrophages during chronic infections.

Identifiants

pubmed: 32735621
doi: 10.1371/journal.pone.0236887
pii: PONE-D-20-09198
pmc: PMC7394435
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e0236887

Déclaration de conflit d'intérêts

The authors have declared that no competing interests exist.

Références

J Zoo Wildl Med. 2004 Dec;35(4):549-52
pubmed: 15732600
Vet Microbiol. 2001 Oct 1;82(4):331-45
pubmed: 11506927
J Med Microbiol. 2005 Nov;54(Pt 11):1007-1015
pubmed: 16192430
Am J Pathol. 1978 Jun;91(3):433-50
pubmed: 655259
Cell Microbiol. 2007 Apr;9(4):891-909
pubmed: 17087732
Vet Microbiol. 2003 Feb 2;91(2-3):135-45
pubmed: 12458163
Am J Pathol. 1978 Jun;91(3):451-68
pubmed: 655260
Clin Immunol. 2005 Mar;114(3):227-38
pubmed: 15721833
Res Vet Sci. 1995 Nov;59(3):255-60
pubmed: 8588102
J Med Primatol. 1999 Feb;28(1):11-8
pubmed: 10372536
Vet Microbiol. 2004 Dec 9;104(3-4):197-206
pubmed: 15564028
Braz J Microbiol. 2019 Apr;50(2):539-546
pubmed: 30680603
Cell Mol Life Sci. 2015 Nov;72(21):4111-26
pubmed: 26210152
J Comp Pathol. 1993 Jan;108(1):41-6
pubmed: 8473557
J Clin Microbiol. 2012 Mar;50(3):1070-2
pubmed: 22219308
Microbiol Spectr. 2016 Jun;4(3):
pubmed: 27337444
Int J Syst Bacteriol. 1995 Oct;45(4):820-5
pubmed: 7547305
J Comp Pathol. 2010 Aug-Oct;143(2-3):101-9
pubmed: 20167332
Vet Pathol. 2001 May;38(3):343-6
pubmed: 11355669
Can Vet J. 2007 Sep;48(9):927-30
pubmed: 17966333
Nat Rev Microbiol. 2008 May;6(5):339-48
pubmed: 18414500
Cell Microbiol. 2017 Oct;19(10):
pubmed: 28656691
J Exp Med. 2003 Aug 18;198(4):545-56
pubmed: 12925673
J Comp Pathol. 2000 Feb-Apr;122(2-3):77-100
pubmed: 10684678
J Vet Diagn Invest. 2010 Jul;22(4):598-602
pubmed: 20622232
Vet Microbiol. 1995 Aug;45(4):339-50
pubmed: 7483247
Vet Microbiol. 1994 Jul;41(1-2):1-9
pubmed: 7801512
J Clin Microbiol. 1993 May;31(5):1136-42
pubmed: 8501214
Front Cell Infect Microbiol. 2017 Sep 06;7:400
pubmed: 28932708
Microbes Infect. 2015 Sep;17(9):628-37
pubmed: 26043821
Vet Pathol. 1982 May;19(3):326-9
pubmed: 7072101
Nat Rev Microbiol. 2009 Feb;7(2):165-71
pubmed: 19098923
Infect Immun. 2002 Oct;70(10):5816-21
pubmed: 12228312

Auteurs

Carlos Eduardo Real Pereira (CER)

Department of Veterinary Clinic and Surgery, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America.

Talita Pilar Resende (TP)

Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America.

Aníbal G Armién (AG)

Department of Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America.
Ultrastructural Pathology Unit, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America.

Ricardo Pereira Laub (RP)

Department of Veterinary Clinic and Surgery, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

Fabio Augusto Vannucci (FA)

Department of Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America.

Renato Lima Santos (RL)

Department of Veterinary Clinic and Surgery, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

Connie Jane Gebhart (CJ)

Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America.
Department of Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America.

Roberto Mauricio Carvalho Guedes (RMC)

Department of Veterinary Clinic and Surgery, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH