Observation of gapped state in rare-earth monopnictide HoSb.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
31 Jul 2020
31 Jul 2020
Historique:
received:
06
03
2020
accepted:
08
07
2020
entrez:
2
8
2020
pubmed:
2
8
2020
medline:
2
8
2020
Statut:
epublish
Résumé
The rare-earth monopnictide family is attracting an intense current interest driven by its unusual extreme magnetoresistance (XMR) property and the potential presence of topologically non-trivial surface states. The experimental observation of non-trivial surface states in this family of materials are not ubiquitous. Here, using high-resolution angle-resolved photoemission spectroscopy, magnetotransport, and parallel first-principles modeling, we examine the nature of electronic states in HoSb. Although we find the presence of bulk band gaps at the [Formula: see text] and X-symmetry points of the Brillouin zone, we do not find these gaps to exhibit band inversion so that HoSb does not host a Dirac semimetal state. Our magnetotransport measurements indicate that HoSb can be characterized as a correlated nearly-complete electron-hole-compensated semimetal. Our analysis reveals that the nearly perfect electron-hole compensation could drive the appearance of non-saturating XMR effect in HoSb.
Identifiants
pubmed: 32737330
doi: 10.1038/s41598-020-69414-z
pii: 10.1038/s41598-020-69414-z
pmc: PMC7395779
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
12961Références
Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
doi: 10.1103/RevModPhys.82.3045
Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5, 398 (2009).
doi: 10.1038/nphys1274
Hasan, M. Z., Xu, S.-Y. & Neupane, M. Topological Insulators: Fundamentals and Perspectives (Wiley, New York, 2015).
Bansil, A., Lin, H. & Das, T. Colloquium: Topological band theory. Rev. Mod. Phys. 88, 021004 (2016).
doi: 10.1103/RevModPhys.88.021004
Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in [Formula: see text]. Phys. Rev. B 88, 125427 (2013).
doi: 10.1103/PhysRevB.88.125427
Neupane, M. et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility [Formula: see text]. Nat. Commun. 5, 3786 (2014).
pubmed: 24807399
doi: 10.1038/ncomms4786
Xu, S.-Y. et al. Discovery of a Weyl Fermion semimetal and topological fermi arcs. Science 349, 613 (2015).
pubmed: 26184916
doi: 10.1126/science.aaa9297
Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).
Neupane, M. et al. Observation of topological nodal fermion semimetal phase in ZrSiS. Phys. Rev. B 93, 201104 (2016).
doi: 10.1103/PhysRevB.93.201104
Yoshomi, R. et al. Dirac electron states formed at the heterointerface between a topological insulator and a conventional semiconductor. Nat. Mater. 13, 253–257 (2014).
doi: 10.1038/nmat3885
Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).
doi: 10.1103/PhysRevB.76.045302
Zhao, Y. X. & Wang, Z. D. Novel [Formula: see text] topological metals and semimetals. Phys. Rev. Lett. 116, 016401 (2016).
pubmed: 26799032
doi: 10.1103/PhysRevLett.116.016401
Zeng, M. et al. Topological semimetals and topological insulators in rare earth monopnictides. arXiv:1504.03492 (2015).
He, J. et al. Distinct electronic structure for the extreme magnetoresistance in YSb. Phys. Rev. Lett. 117, 267201 (2016).
pubmed: 28059532
doi: 10.1103/PhysRevLett.117.267201
Yang, H. .-Y. et al. Extreme magnetoresistance in the topologically trivial lanthanum monopnictide LaAs. Phys. Rev. B 96, 235128 (2017).
doi: 10.1103/PhysRevB.96.235128
Pavlosiuk, O., Swatek, P., Kaczorowski, D. & Wiśniewski, P. Magnetoresistance in LuBi and YBi semimetals due to nearly perfect carrier compensation. Phys. Rev. B 97, 235132 (2018).
doi: 10.1103/PhysRevB.97.235132
Guo, C. et al. Possible Weyl fermions in the magnetic Kondo system CeSb. NPJ Quantum Mater. 2, 39 (2017).
doi: 10.1038/s41535-017-0038-3
Liang, D. D. et al. Extreme magnetoresistance and Shubnikov–de Haas oscillations in ferromagnetic DySb. APL Materials 6, 086105 (2018).
doi: 10.1063/1.5040662
Yu, Q.-H. et al. Magnetoresistance and Shubnikov–de Haas oscillation in YSb. EPL 119, 17002 (2017).
doi: 10.1209/0295-5075/119/17002
Yang, H.-Y. et al. Interplay of Magnetism and Transport in HoBi. Phys. Rev. B 98, 045136 (2018).
doi: 10.1103/PhysRevB.98.045136
Pavlosiuk, O., Swatek, P. & Wiśniewski, P. Giant magnetoresistance, three-dimensional Fermi surface and origin of resistivity plateau in YSb semimetal. Sci. Rep. 6, 38691 (2016).
pubmed: 27934949
pmcid: 5146676
doi: 10.1038/srep38691
Pavlosiuk, O., Kleinert, M., Swatek, P., Kaczorowski, D. & Wiśniewski, P. Fermi surface topology and magnetotransport in semimetallic LuSb. Sci. Rep. 7, 12822 (2017).
pubmed: 28993691
pmcid: 5634453
doi: 10.1038/s41598-017-12792-8
Ali, M. N. et al. Large, non-saturating magnetoresistance in [Formula: see text]. Nature 514, 205 (2014).
pubmed: 25219849
doi: 10.1038/nature13763
Liang, T. et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal [Formula: see text]. Nat. Mater. 14, 280 (2015).
pubmed: 25419815
doi: 10.1038/nmat4143
Mun, E. et al. Magnetic field effects on transport properties of [Formula: see text]. Phys. Rev. B 85, 035135 (2012).
doi: 10.1103/PhysRevB.85.035135
Huang, X. et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).
Wu, Y. et al. Asymmetric mass acquisition in LaBi: topological semimetal candidate. Phys. Rev. B 94, 081108 (2016).
doi: 10.1103/PhysRevB.94.081108
Niu, X. H. et al. Presence of exotic electronic surface states in LaBi and LaSb. Phys. Rev. B 94, 165163 (2016).
doi: 10.1103/PhysRevB.94.165163
Nayak, J. et al. Multiple Dirac cones at the surface of the topological metal LaBi. Nat. Commun. 8, 13942 (2017).
pubmed: 28067241
pmcid: 5227739
doi: 10.1038/ncomms13942
Lou, R. et al. Evidence of topological insulator state in the semimetal LaBi. Phys. Rev. B 95, 115140 (2017).
doi: 10.1103/PhysRevB.95.115140
Nummy, T. J. et al. Measurement of the atomic orbital composition of the near-fermi-level electronic states in the lanthanum monopnictides LaBi, LaSb, and LaAs. NPJ Quantum Mater. 3, 24 (2018).
doi: 10.1038/s41535-018-0094-3
Feng, B. et al. Experimental observation of node-line-like surface states in LaBi. Phys. Rev. B 97, 155153 (2018).
doi: 10.1103/PhysRevB.97.155153
Zeng, L.-K. et al. Compensated semimetal LaSb with unsaturated magnetoresistance. Phys. Rev. Lett. 117, 127204 (2016).
pubmed: 27689296
doi: 10.1103/PhysRevLett.117.127204
Oinuma, H. et al. Three-dimensional band structure of LaSb and CeSb: absence of band inversion. Phys. Rev. B 96, 041120(R) (2017).
doi: 10.1103/PhysRevB.96.041120
Alidoust, N. et al. A new form of (unexpected) Dirac fermions in the strongly-correlated cerium monopnictides. arXiv:1604.08571 (2016).
Kuroda, K. et al. Experimental determination of the topological phase diagram in cerium monopnictides. Phys. Rev. Lett. 120, 086402 (2018).
pubmed: 29543003
doi: 10.1103/PhysRevLett.120.086402
Ye, L., Suzuki, T., Wicker, C. R. & Checkelsky, J. G. Extreme magnetoresistance in magnetic rare-earth monopnictides. Phys. Rev. B 97, 081108 (2018).
doi: 10.1103/PhysRevB.97.081108
Neupane, M. et al. Observation of Dirac-like semi-metallic phase in NdSb. J. Phys. Cond. Mater. 28, 23LT02 (2016).
doi: 10.1088/0953-8984/28/23/23LT02
Busch, G. & Vogt, O. Magnetic anisotropies in antiferromagnetic rare earth antimonide single crystals. J. Appl. Phys. 39, 1334 (1968).
doi: 10.1063/1.1656288
Child, H. R., Wilkinson, M. K., Cable, J. W., Koehler, W. C. & Wollan, E. O. Neutron diffraction investigation of the magnetic properties of compounds of rare-earth metals with group v anions. Phys. Rev. 131, 922 (1963).
doi: 10.1103/PhysRev.131.922
Wang, Y.-Y., Sun, L.-L., Xu, S., Su, Y. & Xia, T.-L. Unusual magnetotransport in holmium monoantimonide. Phys. Rev. B 98, 045137 (2018).
doi: 10.1103/PhysRevB.98.045137
Kulshrestha, S., Rana, P., Singh, S. K. & Gupta, D. C. Electronic and thermal properties of HoSb under pressure: a LSDA+U study. AIP Conf. Proc. 1349, 797 (2011).
doi: 10.1063/1.3606098
Canfield, P. C. & Fisk, Z. Growth of single crystals from metallic fluxes. Phil. Mag. B 65, 1117 (1992).
doi: 10.1080/13642819208215073
Yu, R., Qi, X. L., Bernevig, A., Fang, Z. & Dai, X. Equivalent expression of [Formula: see text] topological invariant for band insulators using the non-Abelian Berry connection. Phys. Rev. B 84, 075119 (2011).
doi: 10.1103/PhysRevB.84.075119
Guo, P.-J., Yang, H.-C., Zhang, B.-J., Liu, K. & Lu, Z.-Y. Charge compensation in extremely large magnetoresistance materials LaSb and LaBi revealed by first-principles calculations. Phys. Rev. B 93, 235142 (2016).
doi: 10.1103/PhysRevB.93.235142
Brun, T. O., Korty, F. W. & Kouvel, J. S. Quadropolar interactions and the magnetic states of HoSb. J. Magn. Magn. Mater. 15, 298 (1980).
doi: 10.1016/0304-8853(80)91059-8
Tafti, F. F., Gibson, Q. D., Kushwaha, S. K., Haldolaarachchige, N. & Cava, R. J. Resistivity plateau and extreme magnetoresistance in LaSb. Nat. Phys. 12, 272 (2016).
doi: 10.1038/nphys3581
Shekhar, C. et al. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. Nat. Phys. 11, 645 (2015).
doi: 10.1038/nphys3372
Leahy, I. A. et al. Nonsaturating large magnetoresistance in semimetals. PNAS 10, 1073 (2018).
Kuroda, K. et al. Devils staircase transition of the electronic structures in CeSb. Nat. Commun. 11, 2888 (2020).
pubmed: 32514054
pmcid: 7280508
doi: 10.1038/s41467-020-16707-6
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
doi: 10.1103/PhysRevB.50.17953
Kresse, G. & Hafner, j. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).
doi: 10.1103/PhysRevB.47.558
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. J. Comput. Mater. Sci. 6, 15 (1996).
doi: 10.1016/0927-0256(96)00008-0
Sun, J., Ruzsinszky, A. & Perdew, J. P. Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett. 115, 036402 (2015).
pubmed: 26230809
doi: 10.1103/PhysRevLett.115.036402
Mostofi, A. A. et al. An updated version of wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 185, 2309 (2014).
doi: 10.1016/j.cpc.2014.05.003
Wu, Q., Zhang, S., Song, H.-F., Troyer, M. & Soluyanov, A. A. Comput. Phys. Commun. 224, 405 (2018).
doi: 10.1016/j.cpc.2017.09.033
Lopez Sancho, M. . P., Lopez Sancho, J. . M. . & Rubio, J. . Quick iterative scheme for the calculation of transfer matrices: application to MO(100). J. Phys. F Met. Phys. 14, 1205 (1984).
doi: 10.1088/0305-4608/14/5/016
Lopez Sancho, M. P., Lopez Sancho, J. . M. . & Rubio, J. Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F Met. Phys. 15, 851 (1985).
doi: 10.1088/0305-4608/15/4/009