Natural rubber as a renewable carbon source for mesoporous carbon/silica nanocomposites.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
31 07 2020
31 07 2020
Historique:
received:
17
03
2020
accepted:
20
07
2020
entrez:
2
8
2020
pubmed:
2
8
2020
medline:
2
8
2020
Statut:
epublish
Résumé
This study is the first report on the preparation of mesoporous carbon/silica (MCS) nanocomposites with tunable mesoporosity and hydrophobicity using natural rubber (NR) as a renewable and cheap carbon source. A series of mesoporous nanocomposites based on NR and hexagonal mesoporous silica (HMS) were prepared via an in situ sol-gel process and used as precursors; then, they were converted into MCS materials by controlled carbonization. The NR/HMS precursors exhibited a high dispersion of rubber phase incorporated into the mesostructured silica framework as confirmed by small-angle X-ray scattering and high-resolution transmission electron microscopy. An increase in the carbonization temperature up to 700 °C resulted in MCS nanocomposites with a well-ordered mesostructure and uniform framework-confined wormhole-like channels. The NR/HMS nanocomposites possessed high specific surface area (500-675 m
Identifiants
pubmed: 32737440
doi: 10.1038/s41598-020-69963-3
pii: 10.1038/s41598-020-69963-3
pmc: PMC7395082
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
12977Références
Tian, X. et al. Sulfonic acid-functionalized mesoporous carbon/silica as efficient catalyst for dehydration of fructose into 5-hydroxymethylfurfural. RSC Adv. 6, 101526–101534 (2016).
Yang, J. Y. et al. Effective nitrosamines trap derived from the in situ carbonized mesoporous silica MCM-41. J. Hazard. Mater. 176, 602–608 (2010).
pubmed: 20022171
Nishihara, H. et al. Carbon-coated mesoporous silica with hydrophobicity and electrical conductivity. Carbon 46, 48–53 (2008).
Kwon, T. et al. Carbon-coated mesoporous silica as an electrode material. Microporous Mesoporous Mater. 132, 421–427 (2010).
Fang, Y. et al. Dual-pore mesoporous carbon@silica composite core-shell nanospheres for multidrug delivery. Angew. Chem. Int. Ed. Engl. 53, 5366–5370 (2014).
pubmed: 24764082
Valle-Vigón, P., Sevilla, M. & Fuertes, A. B. Mesostructured silica–carbon composites synthesized by employing surfactants as carbon source. Microporous Mesoporous Mater. 134, 165–174 (2010).
Zhong, R. et al. Silica-carbon nanocomposite acid catalyst with large mesopore interconnectivity by vapor-phase assisted hydrothermal treatment. ACS Sus. Chem. Eng. 6, 7859–7870 (2018).
Esmeryan, K. D., Castano, C. E., Bressler, A. H., Fergusson, C. P. & Mohammadi, R. Single-step flame synthesis of carbon nanoparticles with tunable structure and chemical reactivity. RSC Adv. 6, 61620–61629 (2016).
Barroso-Bogeat, A., Alexandre-Franco, M., Fernández-González, C. & Gómez-Serrano, V. Activated carbon surface chemistry: Changes upon impregnation with Al(III), Fe(III) and Zn(II)-metal oxide catalyst precursors from NO
Lopez-Ramon, M. V., Stoeckli, F., Moreno-Castilla, C. & Carrasco-Marin, F. On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon 37, 1215–1221 (1999).
Xu, F. et al. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage. Nat. Commun. 6, 7221. https://doi.org/10.1038/ncomms8221 (2015).
doi: 10.1038/ncomms8221
pubmed: 26072734
pmcid: 4490369
Huang, J. et al. Hierarchical porous graphene carbon-based supercapacitors. Chem. Mater. 27, 2107–2113 (2015).
Yokoi, T., Seo, S., Chino, N., Shimojima, A. & Okubo, T. Preparation of silica/carbon composites with uniform and well-ordered mesopores by esterification method. Microporous Mesoporous Mater. 124, 123–130 (2009).
Nishihara, H. et al. Fabrication of a highly conductive ordered porous electrode by carbon-coating of a continuous mesoporous silica film. Chem. Mater. 23, 3144–3151 (2011).
Liu, R. et al. Triconstituent co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas. J. Am. Chem. Soc. 128, 11652–11662 (2006).
pubmed: 16939291
Nuntang, S. et al. Novel mesoporous composites based on natural rubber and hexagonal mesoporous silica: Synthesis and characterization. Mater. Chem. Phys. 143, 1199–1208 (2014).
Nuntang, S. et al. Mesostructured natural rubber/in situ formed silica nanocomposites: A simple way to prepare mesoporous silica with hydrophobic properties. Microporous Mesoporous Mater. 259, 79–88 (2018).
Nuntang, S., Yousatit, S., Yokoi, T. & Ngamcharussrivichai, C. Tunable mesoporosity and hydrophobicity of natural rubber/hexagonal mesoporous silica nanocomposites. Microporous Mesoporous Mater. 275, 235–243 (2019).
Krueyai, Y., Punyapalakul, P. & Wongrueng, A. Removal of haloacetonitrile by adsorption on thiol-functionalized mesoporous composites based on natural rubber and hexagonal mesoporous silica. Environ. Eng. Res. 20, 342–346 (2015).
Nuntang, S. et al. Organosulfonic acid-functionalized mesoporous composites based on natural rubber and hexagonal mesoporous silica. Mater. Chem. Phys. 147, 583–593 (2014).
Nuntang, S., Yokoi, T., Tatsumi, T. & Ngamcharussrivichai, C. Enhanced esterification of carboxylic acids with ethanol using propylsulfonic acid-functionalized natural rubber/hexagonal mesoporous silica nanocomposites. Catal. Commun. 80, 5–9 (2016).
Kozakevych, R. B., Bolbukh, Y. M. & Tertykh, V. A. Controlled release of diclofenac sodium from silica-chitosan composites. World J. Nano Sci. Eng. 03, 69–78 (2013).
Khlibsuwan, R., Tansena, W. & Pongjanyakul, T. Modification of alginate beads using gelatinized and ungelatinized arrowroot (Tacca leontopetaloides L. Kuntze) starch for drug delivery. Int. J. Biol. Macromol. 118, 683–692 (2018).
pubmed: 29959011
Kierys, A., Zaleski, R., Grochowicz, M., Gorgol, M. & Sienkiewicz, A. Polymer–mesoporous silica composites for drug release systems. Microporous Mesoporous Mater. 294, 109881 (2020).
Mohammadzadeh, M., Nourbakhsh, M. S., Khodaverdi, E., Hadizadeh, F. & Malayeri, S. O. Enhanced loading and release of non-steroidal anti-inflammatory drugs from silica-based nanoparticle carriers. Chem. Biol. Drug Des. 88, 370–379 (2016).
pubmed: 27062095
Xu, W. et al. Controlled drug release from bifunctionalized mesoporous silica. J. Solid State Chem. 181, 2837–2844 (2008).
Pasqua, L., Testa, F., Aiello, R., Cundari, S. & Nagy, J. B. Preparation of bifunctional hybrid mesoporous silica potentially useful for drug targeting. Microporous Mesoporous Mater. 103, 166–173 (2007).
Saha, R. N., Sajeev, C. & Sahoo, J. A Comparative study of controlled release matrix tablets of diclofenac sodium, ciprofloxacin hydrochloride, and theophylline. Drug Deliv. 8, 149–154 (2008).
Dehghan, M. H. et al. Assessment of isomalt for colon-specific delivery and its comparison with lactulose. AAPS PharmSciTech. 14, 53–59 (2013).
pubmed: 23225025
Chien, J. C. W. & Kiang, J. K. Y. Polymer reactions−X thermal pyrolysis of poly(isoprene). Eur. Polym. J. 15, 1059–1065 (1979).
Cataldo, F. Thermal depolymerization and pyrolysis of cis-1,4-polyisoprene: preparation of liquid polyisoprene and terpene resin. J. Anal. Appl. Pyrolysis 44, 121–130 (1998).
Bhowmick, A. K., Rampalli, S., Gallagher, K., Seeger, R. & McIntyre, D. The degradation of guayule rubber and the effect of resin components on degradation at high temperature. J. Appl. Polym. Sci. 33, 1125–1139 (1987).
Danon, B., van der Gryp, P., Schwarz, C. E. & Görgens, J. F. A review of dipentene (
Kwon, E. & Castaldi, M. J. Fundamental understanding of the thermal degradation mechanisms of waste tires and their air pollutant generation in a N
pubmed: 19731709
McBeath, A. V., Smernik, R. J., Schneider, M. P. W., Schmidt, M. W. I. & Plant, E. L. Determination of the aromaticity and the degree of aromatic condensation of a thermosequence of wood charcoal using NMR. Org. Geochem. 42, 1194–1202 (2011).
Yousatit, S., Jittapasata, T., Leelaphattharaphan, N., Nuntang, S. & Ngamcharussrivichai, C. One-pot synthesis of wormhole-like mesostructured silica with a high amine loading for enhanced adsorption of clofibric acid. J. Porous Mater. 25, 1611–1623 (2018).
Kim, D. Y., Nishiyama, Y., Wada, M. & Kuga, S. J. C. High-yield carbonization of cellulose by sulfuric acid impregnation. Cellulose 8, 29–33 (2001).
Tu, J. et al. High-efficiency transformation of amorphous carbon into graphite nanoflakes for stable aluminum-ion battery cathodes. Nanoscale 11, 12537–12546 (2019).
pubmed: 31169859
Kimura, H. et al. Molecular dynamics and orientation of stretched rubber by solid-state
Kitamura, M., Hata, Y., Yasuoka, H., Kurotsu, T. & Asano, A. Strain-induced
Schmidt, T. et al. Characterization of rubber particles and rubber chain elongation in Taraxacum koksaghyz. BMC Biochem. 11, 11. https://doi.org/10.1186/1471-2091-11-11 (2010).
doi: 10.1186/1471-2091-11-11
pubmed: 20170509
pmcid: 2836272
Kohl, S., Drochner, A. & Vogel, H. Quantification of oxygen surface groups on carbon materials via diffuse reflectance FT-IR spectroscopy and temperature programmed desorption. Catal. Today 150, 67–70 (2010).
Zhong, R. et al. An eco-friendly soft template synthesis of mesostructured silica-carbon nanocomposites for acid catalysis. Chem. Cat. Chem. 7, 3047–3058 (2015).
D’Souza, A. S. & Pantano, C. G. Hydroxylation and dehydroxylation behavior of silica glass fracture surfaces. J. Am. Ceram. Soc. 85, 1499–1504 (2002).
Zhao, X. S., Lu, G. Q., Whittaker, A. K., Millar, G. J. & Zhu, H. Y. Comprehensive study of surface chemistry of MCM-41 using
Wang, X., Lin, K. S., Chan, J. C. & Cheng, S. Direct synthesis and catalytic applications of ordered large pore aminopropyl-functionalized SBA-15 mesoporous materials. J. Phys. Chem. B 109, 1763–1769 (2005).
pubmed: 16851156
Ponnamma, D. et al. Free-volume correlation with mechanical and dielectric properties of natural rubber/multi walled carbon nanotubes composites. Compos. A 77, 164–171 (2015).
Montero, J. M., Isaacs, M. A., Lee, A. F., Lynam, J. M. & Wilson, K. The surface chemistry of nanocrystalline MgO catalysts for FAME production: An in situ XPS study of H
Edwards, H. G. M., Brown, D. R., Dale, J. R. & Plant, S. Raman spectroscopic studies of acid dissociation in sulfonated polystyrene resins. J. Mol. Struct. 595, 111–125 (2001).
Zhang, W. et al. The effect of pH on the functionalization of nylon fabric with carbon nanotubes. J. Nanosci. Nanotechnol. 12, 84–90 (2012).
pubmed: 22523949
Cuesta, A., Dhamelincourt, P., Laureyns, J., Martínez-Alonso, A. & Tascón, J. M. D. Raman microprobe studies on carbon materials. Carbon 32, 1523–1532 (1994).
Zhang, Y., Liu, Q., Xiang, J., Zhang, S. & Frost, R. L. Influence of the structural characteristic of pyrolysis products on thermal stability of styrene-butadiene rubber composites reinforced by different particle sized kaolinites. J. Therm. Anal. Calorim. 117, 1201–1210 (2014).
Wu, J. B., Lin, M. L., Cong, X., Liu, H. N. & Tan, P. H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 47, 1822–1873 (2018).
pubmed: 29368764
Ganguly, A., Sharma, S., Papakonstantinou, P. & Hamilton, J. Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J. Phys. Chem. C 115, 17009–17019 (2011).
Park, M., Ryu, J., Kim, Y. & Cho, J. Corn protein-derived nitrogen-doped carbon materials with oxygen-rich functional groups: A highly efficient electrocatalyst for all-vanadium redox flow batteries. Energy Environ. Sci. 7, 3727–3735 (2014).
Cheung, W. H., Lau, S. S. Y., Leung, S. Y., Ip, A. W. M. & McKay, G. Characteristics of chemical modified activated carbons from bamboo scaffolding. Chin. J. Chem. Eng. 20, 515–523 (2012).
Pak, S. H., Jeon, M. J. & Jeon, Y. W. Study of sulfuric acid treatment of activated carbon used to enhance mixed VOC removal. Int. Biodeterior. Biodegrad. 113, 195–200 (2016).
Aguilar, K. M., Kose, Y., Amano, Y., Machida, M. & Imazeki, F. Influence of oxidation conditions of activated carbon on adsorption of Pb(II) from aqueous solution. J. Environ. Chem. 26, 109–114 (2016).
de Clippel, F. et al. Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon-silica catalysts. J. Am. Chem. Soc. 134, 10089–10101 (2012).
pubmed: 22550936
Shafeeyan, M. S., Daud, W. M. A. W., Houshmand, A. & Shamiri, A. A review on surface modification of activated carbon for carbon dioxide adsorption. J. Anal. Appl. Pyrolysis 89, 143–151 (2010).
Bravo, S. A., Lamas, M. C. & Salamón, C. J. In-vitro studies of diclofenac sodium controlled-release from biopolymeric hydrophilic matrices. J. Pharm. Pharm. Sci 5, 213–219 (2002).
pubmed: 12553888
Baishya, H. Application of mathematical models in drug release kinetics of Carbidopa and Levodopa ER tablets. J. Dev. Drugs 06, 171 (2017).
Klech, C. M. & Simonelli, A. P. Examination of the moving boundaries associated with non-fickian water swelling of glassy gelatin beads: Effect of solution pH. J. Membr. Sci. 43, 87–101 (1989).