Effects of bifrontal transcranial direct current stimulation on brain glutamate levels and resting state connectivity: multimodal MRI data for the cathodal stimulation site.


Journal

European archives of psychiatry and clinical neuroscience
ISSN: 1433-8491
Titre abrégé: Eur Arch Psychiatry Clin Neurosci
Pays: Germany
ID NLM: 9103030

Informations de publication

Date de publication:
Feb 2021
Historique:
received: 25 03 2020
accepted: 22 07 2020
pubmed: 4 8 2020
medline: 14 1 2022
entrez: 4 8 2020
Statut: ppublish

Résumé

Transcranial direct current stimulation (tDCS) over prefrontal cortex (PFC) regions is currently proposed as therapeutic intervention for major depression and other psychiatric disorders. The in-depth mechanistic understanding of this bipolar and non-focal stimulation technique is still incomplete. In a pilot study, we investigated the effects of bifrontal stimulation on brain metabolite levels and resting state connectivity under the cathode using multiparametric MRI techniques and computational tDCS modeling. Within a double-blind cross-over design, 20 subjects (12 women, 23.7 ± 2 years) were randomized to active tDCS with standard bifrontal montage with the anode over the left dorsolateral prefrontal cortex (DLPFC) and the cathode over the right DLPFC. Magnetic resonance spectroscopy (MRS) was acquired before, during, and after prefrontal tDCS to quantify glutamate (Glu), Glu + glutamine (Glx) and gamma aminobutyric acid (GABA) concentration in these areas. Resting-state functional connectivity MRI (rsfcMRI) was acquired before and after the stimulation. The individual distribution of tDCS induced electric fields (efields) within the MRS voxel was computationally modelled using SimNIBS 2.0. There were no significant changes of Glu, Glx and GABA levels across conditions but marked differences in the course of Glu levels between female and male participants were observed. Further investigation yielded a significantly stronger Glu reduction after active compared to sham stimulation in female participants, but not in male participants. For rsfcMRI neither significant changes nor correlations with MRS data were observed. Exploratory analyses of the effect of efield intensity distribution on Glu changes showed distinct effects in different efield groups. Our findings are limited by the small sample size, but correspond to previously published results of cathodal tDCS. Future studies should address gender and efield intensity as moderators of tDCS induced effects.

Identifiants

pubmed: 32743758
doi: 10.1007/s00406-020-01177-0
pii: 10.1007/s00406-020-01177-0
pmc: PMC7867555
doi:

Substances chimiques

Glutamic Acid 3KX376GY7L
gamma-Aminobutyric Acid 56-12-2

Types de publication

Journal Article Randomized Controlled Trial

Langues

eng

Sous-ensembles de citation

IM

Pagination

111-122

Subventions

Organisme : Bundesministerium für Bildung und Forschung
ID : 01EE1403E

Références

Brunoni AR, Shiozawa P, Truong D, Javitt DC (2015) Understanding tDCS effects in schizophrenia : a systematic review of clinical data and an integrated computation modeling analysis Understanding tDCS effects in schizophrenia : a systematic review of clinical data and an integrated computation modeling analysis. Expert Rev Med Devices 2015:383–394. https://doi.org/10.1586/17434440.2014.911082
doi: 10.1586/17434440.2014.911082
Palm U, Keeser D, Hasan A, Kupka MJ, Blautzik J, Sarubin N et al (2016) Prefrontal transcranial direct current stimulation for treatment of schizophrenia with predominant negative symptoms: a double-blind. Sham-controlled proof-of-concept study. Schizophr Bull 42:1253–1261. https://doi.org/10.1093/schbul/sbw041
doi: 10.1093/schbul/sbw041 pubmed: 27098066 pmcid: 4988747
Lee J, Yoon YB, Wijtenburg SA, Rowland LM, Chen H, Gaston FE et al (2018) Lower glutamate level in temporo-parietal junction may predict a better response to tDCS in schizophrenia. Schizophr Res 2018:1–2. https://doi.org/10.1016/j.schres.2018.05.032
doi: 10.1016/j.schres.2018.05.032
Agarwal SM, Shivakumar V, Bose A, Subramaniam A, Nawani H, Chhabra H et al (2013) Transcranial direct current stimulation in schizophrenia. Clin Psychopharmacol Neurosci 11:118
doi: 10.9758/cpn.2013.11.3.118
Palm U, Hasan A, Keeser D, Falkai P, Padberg F (2013) Transcranial random noise stimulation for the treatment of negative symptoms in schizophrenia. Schizophr Res 146:372–373. https://doi.org/10.1016/j.schres.2013.03.003
doi: 10.1016/j.schres.2013.03.003 pubmed: 23517664
Medeiros LF, de Souza ICC, Vidor LP, de Souza A, Deitos A, Volz MS et al (2012) Neurobiological effects of transcranial direct current stimulation: a review. Front Psychiatry 2012:3. https://doi.org/10.3389/fpsyt.2012.00110
doi: 10.3389/fpsyt.2012.00110
Kalu UG, Sexton CE, Loo CK, Ebmeier KP (2012) Transcranial direct current stimulation in the treatment of major depression: a meta-analysis. Psychol Med. https://doi.org/10.1017/S0033291711003059
doi: 10.1017/S0033291711003059 pubmed: 22236735
Brunoni AR, Ferrucci R, Fregni F, Boggio PS, Priori A (2012) Transcranial direct current stimulation for the treatment of major depressive disorder: a summary of preclinical, clinical and translational findings. Prog Neuro-Psychopharmacology Biol Psychiatry 39:9–16. https://doi.org/10.1016/j.pnpbp.2012.05.016
doi: 10.1016/j.pnpbp.2012.05.016
Vöröslakos M, Takeuchi Y, Brinyiczki K, Zombori T, Oliva A, Fernández-Ruiz A et al (2018) Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nat Commun 2018:9. https://doi.org/10.1038/s41467-018-02928-3
doi: 10.1038/s41467-018-02928-3
Bestmann S, Walsh V (2017) Transcranial electrical stimulation. Curr Biol 27:R1258–R1262. https://doi.org/10.1016/j.cub.2017.11.001
doi: 10.1016/j.cub.2017.11.001 pubmed: 29207262
Bulubas L, Padberg F, Bueno PV, Duran F, Busatto G, Amaro E et al (2019) Antidepressant effects of tDCS are associated with prefrontal gray matter volumes at baseline: evidence from the ELECT-TDCS trial. Brain Stimul 2019:1–8. https://doi.org/10.1016/j.brs.2019.05.006
doi: 10.1016/j.brs.2019.05.006
Filmer HL, Ehrhardt SE, Shaw TB, Mattingley JB, Dux PE (2019) The efficacy of transcranial direct current stimulation to prefrontal areas is related to underlying cortical morphology. Neuroimage 196:41–48. https://doi.org/10.1016/j.neuroimage.2019.04.026
doi: 10.1016/j.neuroimage.2019.04.026 pubmed: 30978491
Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527(Pt 3):633–639
doi: 10.1111/j.1469-7793.2000.t01-1-00633.x
Stagg CJ, Nitsche MA (2011) Physiological basis of transcranial direct current stimulation. Neuroscientist 17:37–53. https://doi.org/10.1177/1073858410386614
doi: 10.1177/1073858410386614 pubmed: 21343407
Nitsche MA, Paulus W (2001) Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 2001:39–40. https://doi.org/10.1212/wnl.57.10.1899
doi: 10.1212/wnl.57.10.1899
Rahman A, Reato D, Arlotti M, Gasca F, Datta A, Parra LC et al (2013) Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects. J Physiol 591:2563–2578. https://doi.org/10.1113/jphysiol.2012.247171
doi: 10.1113/jphysiol.2012.247171 pubmed: 23478132 pmcid: 3678043
Kabakov AY, Muller PA, Pascual-Leone A, Jensen FE, Rotenberg A (2012) Contribution of axonal orientation to pathway-dependent modulation of excitatory transmission by direct current stimulation in isolated rat hippocampus. J Neurophysiol 107:1881–1889. https://doi.org/10.1152/jn.00715.2011
doi: 10.1152/jn.00715.2011 pubmed: 22219028 pmcid: 3331663
Wörsching J, Padberg F, Ertl-Wagner B, Kumpf U, Kirsch B, Keeser D (2016) Imaging transcranial direct current stimulation (tDCS) of prefrontal cortex—correlation or causality in stimulation-mediated effects? Neurosci Biobehav Rev 69:333–356
doi: 10.1016/j.neubiorev.2016.08.001
Nitsche M, Doemkes S (2007) Shaping the effects of transcranial direct current stimulation of the human motor cortex. J Neurophysiol 2007:3109–3117. https://doi.org/10.1152/jn.01312.2006
doi: 10.1152/jn.01312.2006
Opitz A, Paulus W, Will S, Antunes A, Thielscher A (2015) Determinants of the electric field during transcranial direct current stimulation. Neuroimage 109:140–150. https://doi.org/10.1016/j.neuroimage.2015.01.033
doi: 10.1016/j.neuroimage.2015.01.033 pubmed: 25613437
Charvet LE, Kasschau M, Datta A, Knotkova H, Stevens MC, Alonzo A et al (2015) Remotely-supervised transcranial direct current stimulation (tDCS) for clinical trials: guidelines for technology and protocols. Front Syst Neurosci 9:1–13. https://doi.org/10.3389/fnsys.2015.00026
doi: 10.3389/fnsys.2015.00026
Bikson M, Datta A, Rahman A, Scaturro J (2010) Electrode montages for tDCS and weak transcranial electrical stimulation: role of “return” electrode’s position and size. Clin Neurol 6:1976–1978. https://doi.org/10.1021/nn300902w.release
doi: 10.1021/nn300902w.release
Purpura DP, McMurtry JG (1965) Intracellular activities and evoked potential changes during polarization of motor cortex. J Neurophysiol 28:166–185
doi: 10.1152/jn.1965.28.1.166
Opitz A, Yeagle E, Thielscher A, Schroeder C, Mehta AD, Milham MP (2018) On the importance of precise electrode placement for targeted transcranial electric stimulation. Neuroimage 181:560–567. https://doi.org/10.1016/j.neuroimage.2018.07.027
doi: 10.1016/j.neuroimage.2018.07.027 pubmed: 30010008 pmcid: 6139038
Keeser D, Meindl T, Bor J, Palm U, Pogarell O, Mulert C et al (2011) Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. J Neurosci 31:15284–15293. https://doi.org/10.1523/JNEUROSCI.0542-11.2011
doi: 10.1523/JNEUROSCI.0542-11.2011 pubmed: 22031874 pmcid: 6703525
Park C-H, Chang WH, Park J-Y, Shin Y-I, Kim ST, Kim Y-H (2013) Transcranial direct current stimulation increases resting state interhemispheric connectivity. Neurosci Lett 539:7–10. https://doi.org/10.1016/j.neulet.2013.01.047
doi: 10.1016/j.neulet.2013.01.047 pubmed: 23416318
O’Shea J, Boudrias MH, Stagg CJ, Bachtiar V, Kischka U, Blicher JU et al (2014) Predicting behavioural response to TDCS in chronic motor stroke. Neuroimage. https://doi.org/10.1016/j.neuroimage.2013.05.096
doi: 10.1016/j.neuroimage.2013.05.096 pubmed: 24816533 pmcid: 4099269
Stagg CJ, Johansen-Berg H, Reis J, Byblow WD, Sehm B (2013) Human neuroscience Studying the effects of transcranial direct-current stimulation in stroke recovery using magnetic resonance imaging. Front Human Neurosci. https://doi.org/10.3389/fnhum.2013.00857
doi: 10.3389/fnhum.2013.00857
Kim S, Stephenson MC, Morris PG, Jackson SR (2014) TDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7T magnetic resonance spectroscopy study. Neuroimage. https://doi.org/10.1016/j.neuroimage.2014.05.070
doi: 10.1016/j.neuroimage.2014.05.070 pubmed: 25610783 pmcid: 4285661
Andrews SC, Hoy KE, Enticott PG, Daskalakis ZJ, Fitzgerald PB (2011) Improving working memory: the effect of combining cognitive activity and anodal transcranial direct current stimulation to the left dorsolateral prefrontal cortex. Brain Stimul 4:84–89. https://doi.org/10.1016/j.brs.2010.06.004
doi: 10.1016/j.brs.2010.06.004 pubmed: 21511208
Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E et al (2005) Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res 166:23–30. https://doi.org/10.1007/s00221-005-2334-6
doi: 10.1007/s00221-005-2334-6 pubmed: 15999258
Stagg CJ, Best JG, Stephenson MC, O’Shea J, Wylezinska M, Kincses ZT et al (2009) Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J Neurosci 29:5202–5206. https://doi.org/10.1523/JNEUROSCI.4432-08.2009
doi: 10.1523/JNEUROSCI.4432-08.2009 pubmed: 19386916 pmcid: 6665468
Stagg CJ, Bachtiar V, Johansen-Berg H (2011) The role of GABA in human motor learning. Curr Biol 21:480–484. https://doi.org/10.1016/j.cub.2011.01.069
doi: 10.1016/j.cub.2011.01.069 pubmed: 21376596 pmcid: 3063350
Antonenko D, Schubert F, Bohm F, Ittermann B, Aydin S, Hayek D et al (2017) tDCS-induced modulation of GABA levels and resting-state functional connectivity in older adults. J Neurosci 2017:0079-17. https://doi.org/10.1523/jneurosci.0079-17.2017
doi: 10.1523/jneurosci.0079-17.2017
Stagg CJ, Bachtiar V, Amadi U, Gudberg CA, Ilie AS, Sampaio-Baptista C et al (2014) Local GABA concentration is related to network-level resting functional connectivity. Elife 2014:1–9. https://doi.org/10.7554/eLife.01465
doi: 10.7554/eLife.01465
Hunter MA, Coffman BA, Gasparovic C, Calhoun VD, Trumbo MC, Clark VP (2015) Baseline effects of transcranial direct current stimulation on glutamatergic neurotransmission and large-scale network connectivity. Brain Res 33:395–401. https://doi.org/10.1038/nbt.3121.ChIP-nexus
doi: 10.1038/nbt.3121.ChIP-nexus
Antonenko D, Thielscher A, Bicalho G (2019) Brain Stimulation Towards precise brain stimulation : is electric field simulation related to neuromodulation ? Brain Stimul. https://doi.org/10.1016/j.brs.2019.03.072
doi: 10.1016/j.brs.2019.03.072 pubmed: 30930209
Bachtiar V, Johnstone A, Berrington A, Lemke C, Johansen-Berg H, Emir U et al (2018) Modulating regional motor cortical excitability with noninvasive brain stimulation results in neurochemical changes in bilateral motor cortices. J Neurosci 38:7327–7336. https://doi.org/10.1523/JNEUROSCI.2853-17.2018
doi: 10.1523/JNEUROSCI.2853-17.2018 pubmed: 30030397 pmcid: 6096041
Kim JH, Kim DW, Chang WH, Kim YH, Kim K, Im CH (2014) Inconsistent outcomes of transcranial direct current stimulation may originate from anatomical differences among individuals: electric field simulation using individual MRI data. Neurosci Lett 564:6–10. https://doi.org/10.1016/j.neulet.2014.01.054
doi: 10.1016/j.neulet.2014.01.054 pubmed: 24508704
Hone-Blanchet A, Edden RA, Fecteau S (2016) Online effects of transcranial direct current stimulation in real time on human prefrontal and striatal metabolites. Biol Psychiatry 80:432–438. https://doi.org/10.1016/j.biopsych.2015.11.008
doi: 10.1016/j.biopsych.2015.11.008 pubmed: 26774968
Dickler M, Lenglos C, Renauld E, Ferland F, Edden RA, Leblond J et al (2018) Online effects of transcranial direct current stimulation on prefrontal metabolites in gambling disorder. Neuropharmacology 131:51–57. https://doi.org/10.1016/j.neuropharm.2017.12.002
doi: 10.1016/j.neuropharm.2017.12.002 pubmed: 29221791
Oldfield RC (1971) the assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:1–17
doi: 10.1016/0028-3932(71)90067-4
Watson D, Clark LA (1999) The PANAS-X: manual for the positive and negative affect schedule—expanded form. Iowa Res Online 277:1–27. https://doi.org/10.1111/j.1742-4658.2010.07754.x
doi: 10.1111/j.1742-4658.2010.07754.x
Lange T, Zaitsev M, Buechert M (2011) Correction of frequency drifts induced by gradient heating in 1H spectra using interleaved reference spectroscopy. J Magn Reson Imaging 33:748–754. https://doi.org/10.1002/jmri.22471
doi: 10.1002/jmri.22471 pubmed: 21563261
Clark VP, Coffman BA, Trumbo MC, Gasparovic C (2011) Transcranial direct current stimulation (tDCS) produces localized and specific alterations in neurochemistry: a 1H magnetic resonance spectroscopy study. Neurosci Lett 500:67–71. https://doi.org/10.1016/j.neulet.2011.05.244
doi: 10.1016/j.neulet.2011.05.244 pubmed: 21683766
Palm U, Feichtner KB, Hasan A, Gauglitz G, Langguth B, Nitsche MA et al (2014) The role of contact media at the skin-electrode interface during transcranial direct current stimulation (tDCS). Brain Stimul 7:762–764. https://doi.org/10.1016/j.brs.2014.06.006
doi: 10.1016/j.brs.2014.06.006 pubmed: 25018056
Mullins PG, McGonigle DJ, O’Gorman RL, Puts NA, Evans CJ, Edden RA (2014) Current practice in the use of MEGA-PRESS spectroscopy for the detection of GABA. Neuroimage 1:43–52. https://doi.org/10.1021/nl061786n.Core-Shell
doi: 10.1021/nl061786n.Core-Shell
Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679. https://doi.org/10.1002/mrm.1910300604
doi: 10.1002/mrm.1910300604 pubmed: 8139448
Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57
doi: 10.1109/42.906424
Quadrelli S, Mountford C, Ramadan S (2016) Hitchhiker’s guide to voxel segmentation for partial volume correction of in vivo magnetic resonance spectroscopy. Magn Reson Insights 9:MRI-S32903
doi: 10.4137/MRI.S32903
Karali T, Kirsch V, Goerigk S, Ertl-Wagner B, Padberg FKD (2019) NAMNIs: neuromodulation and multimodal neuroimaging scripts. In: 25th Human Brain Mapping Congress, Rome, Italy, p 1
Karali T, Kirsch V, Padberg F, Ertl-Wagner BKD (2017) LMU scripts: ready-made HCP-applicaple pipeline for structural and functonal data analysis. In: 23th Human Brain Mapping Congress, Vancouver, Canada, p 1
Thielscher A, Antunes A, Saturnino GB (2015) Field modeling for transcranial magnetic stimulation: a useful tool to understand the physiological effects of TMS? Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS 2015:222–225. https://doi.org/10.1109/embc.2015.7318340
doi: 10.1109/embc.2015.7318340
Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis: I. Segmentation and surface reconstruction. Neuroimage 9:179–194
doi: 10.1006/nimg.1998.0395
Fischl B (2012) FreeSurfer. Neuroimage 62:774–781
doi: 10.1016/j.neuroimage.2012.01.021
Windhoff M, Opitz A, Thielscher A (2013) Electric field calculations in brain stimulation based on finite elements: an optimized processing pipeline for the generation and usage of accurate individual head models. Hum Brain Mapp 34:923–935. https://doi.org/10.1002/hbm.21479
doi: 10.1002/hbm.21479 pubmed: 22109746
Blumberger D, Tran L, Fitzgerald P, Hoy KB, Daskalakis ZJ (2012) A randomized double-blind sham-controlled study of transcranial direct current stimulation for treatment-resistant major depression. Front Psychiatry 3:74
doi: 10.3389/fpsyt.2012.00074
Brunoni AR, Valiengo L, Baccaro A, Zanão TA, de Oliveira JF, Goulart A et al (2013) The sertraline vs electrical current therapy for treating depression clinical study. JAMA Psychiatry 70:383. https://doi.org/10.1001/2013.jamapsychiatry.32
doi: 10.1001/2013.jamapsychiatry.32 pubmed: 23389323
Brunoni AR, Zanao TA, Vanderhasselt M, Valiengo L, de Oliveira JF, Boggio PS et al (2014) Enhancement of affective processing induced by bifrontal transcranial direct current stimulation in patients with major depression. Neuromodul Technol Neural Interface 17:138–142
doi: 10.1111/ner.12080
Padberg F, Kumpf U, Mansmann U, Palm U, Plewnia C, Langguth B et al (2017) Prefrontal transcranial direct current stimulation (tDCS) as treatment for major depression: study design and methodology of a multicenter triple blind randomized placebo controlled trial (DepressionDC). Eur Arch Psychiatry Clin Neurosci. https://doi.org/10.1007/s00406-017-0769-y
doi: 10.1007/s00406-017-0769-y pubmed: 29214483
Bachtiar V, Near J, Johansen-Berg H, Stagg CJ (2015) Modulation of GABA and resting state functional connectivity by transcranial direct current stimulation. Elife 4:1–9. https://doi.org/10.7554/eLife.08789
doi: 10.7554/eLife.08789
Stagg CJ, Jayaram G, Pastor D, Kincses ZT, Matthews PM, Johansen-Berg H (2011) Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia 49:800–804. https://doi.org/10.1016/j.neuropsychologia.2011.02.009
doi: 10.1016/j.neuropsychologia.2011.02.009 pubmed: 21335013 pmcid: 3083512
Barron HC, Vogels TP, Emir UE, Makin TR, O’Shea J, Clare S et al (2016) Unmasking latent inhibitory connections in human cortex to reveal dormant cortical memories. Neuron 90:191–203. https://doi.org/10.1016/j.neuron.2016.02.031
doi: 10.1016/j.neuron.2016.02.031 pubmed: 26996082 pmcid: 4826438
Andrew RB, Guillaume L, Hayley B, Andrew M, Stavros Z, Eberhard EF (2019) Cortical network mechanisms of anodal and cathodal transcranial direct current stimulation in awake primates. BioRxiv 1028725:1–34
Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG et al (2010) Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 66:198–204. https://doi.org/10.1016/j.neuron.2010.03.035
doi: 10.1016/j.neuron.2010.03.035 pubmed: 20434997 pmcid: 2864780
Menon V (2015) Large-scale functional brain organization, vol 2. Elsevier Inc. https://doi.org/10.1016/b978-0-12-397025-1.00024-5
Hunter MA, Coffman BA, Gasparovic C, Calhoun VD, Trumbo MC, Clark VP (2015) Baseline effects of transcranial direct current stimulation on glutamatergic neurotransmission and large-scale network connectivity. Brain Res 1594:92–107. https://doi.org/10.1016/j.brainres.2014.09.066
doi: 10.1016/j.brainres.2014.09.066 pubmed: 25312829
Grachev ID, Apkarian AV (2000) Chemical heterogeneity of the living human brain: a proton MR spectroscopy study on the effects of sex, age, and brain region. Neuroimage 11:554–563. https://doi.org/10.1006/nimg.2000.0557
doi: 10.1006/nimg.2000.0557 pubmed: 10806041
Maudsley AA, Domenig C, Govind V, Darkazanli A, Studholme C, Arheart K et al (2009) Mapping of brain metabolite distributions by volumetric proton MR spectroscopic imaging (MRSI). Magn Reson Med 61:548–559. https://doi.org/10.1002/mrm.21875
doi: 10.1002/mrm.21875 pubmed: 19111009 pmcid: 2724718
Gorman RL, Michels L, Edden RA, Murdoch JB, Martin E (2011) In vivo detection of GABA and glutamate with MEGA-PRESS: reproducibility and gender effects. J Magn Reson Imaging 33:1262–1267. https://doi.org/10.1002/jmri.22520
doi: 10.1002/jmri.22520
Epperson CN, Haga K, Mason GF, Sellers E, Gueorguieva R, Zhang W et al (2002) Cortical γ-aminobutyric acid levels across the menstrual cycle in healthy women and those with premenstrual dysphoric disorder: a proton magnetic resonance spectroscopy study. Arch Gen Psychiatry 59:851–858
doi: 10.1001/archpsyc.59.9.851
Harada M, Kubo H, Nose A, Nishitani H, Matsuda T (2011) Measurement of variation in the human cerebral GABA level by in vivo MEGA-editing proton MR spectroscopy using a clinical 3 T instrument and its dependence on brain region and the female menstrual cycle. Hum Brain Mapp 32:828–833. https://doi.org/10.1002/hbm.21086
doi: 10.1002/hbm.21086 pubmed: 20645307 pmcid: 6870297
Russell MJ, Goodman TA, Visse JM, Beckett L, Russell MJ (2017) Sex and electrode configuration in transcranial electrical stimulation. Front Psychiatry 8:1–9. https://doi.org/10.3389/fpsyt.2017.00147
doi: 10.3389/fpsyt.2017.00147
Seibt O, Brunoni AR, Huang Y, Bikson M (2015) The pursuit of DLPFC: non-neuronavigated methods to target the left dorsolateral pre-frontal cortex with symmetric bicephalic transcranial direct current stimulation (tDCS). Brain Stimul Basic Transl Clin Res Neuromodulation 8:590–602. https://doi.org/10.1016/j.brs.2015.01.401
doi: 10.1016/j.brs.2015.01.401
De Witte S, Klooster D, Dedoncker J, Duprat R, Remue J, Baeken C (2018) Left prefrontal neuronavigated electrode localization in tDCS: 10–20 EEG system versus MRI-guided neuronavigation. Psychiatry Res Neuroimaging 274:1–6. https://doi.org/10.1016/j.pscychresns.2018.02.001
doi: 10.1016/j.pscychresns.2018.02.001 pubmed: 29429773
Abend R, Sarel R, Gonen T, Jalon I, Vaisvaser S, Bar-Haim Y et al (2018) Modulating emotional experience using electrical stimulation of the medial-prefrontal cortex: a preliminary tDCS-fMRI Study. Neuromodul Technol Neural Interface 22:884–893
doi: 10.1111/ner.12787
Peña-Gómez C, Sala-Lonch R, Junqué C, Clemente I, Vidal D, Bargalló N et al (2012) Modulation of large-scale brain networks by transcranial direct current stimulation evidenced by resting-state functional MRI. Brain Stimul 5:252–263. https://doi.org/10.1016/j.brs.2011.08.006.Pe
doi: 10.1016/j.brs.2011.08.006.Pe pubmed: 21962981
Dwyer GE, Craven AR, Hirnstein M, Kompus K, Assmus J, Ersland L et al (2019) No effects of anodal tDCS on local GABA and GLx levels in the left posterior superior temporal gyrus. Front Neurol 10:1–10. https://doi.org/10.3389/fneur.2018.01145
doi: 10.3389/fneur.2018.01145
Brunoni AR, Nitsche MA, Bolognini N, Bikson M, Wagner T, Merabet L et al (2013) Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul 5:175–195. https://doi.org/10.1016/j.brs.2011.03.002.Clinical
doi: 10.1016/j.brs.2011.03.002.Clinical
Dondé C, Amad A, Nieto I, Brunoni AR, Neufeld NH, Bellivier F et al (2017) Transcranial direct-current stimulation (tDCS) for bipolar depression: a systematic review and meta-analysis. Prog Neuro-Psychopharmacol Biol Psychiatry 78:123–131. https://doi.org/10.1016/j.pnpbp.2017.05.021
doi: 10.1016/j.pnpbp.2017.05.021
Spurny B, Seiger R, Moser P, Vanicek T, Reed MB, Heckova E et al (2020) Hippocampal GABA levels correlate with retrieval performance in an associative learning paradigm. Neuroimage 204:116244. https://doi.org/10.1016/j.neuroimage.2019.116244
doi: 10.1016/j.neuroimage.2019.116244 pubmed: 31606475
Spurny B, Heckova E, Seiger R, Moser P, Klöbl M, Vanicek T et al (2019) Automated ROI-based labeling for multi-voxel magnetic resonance spectroscopy data using FreeSurfer. Front Mol Neurosci 12:28
doi: 10.3389/fnmol.2019.00028
Parmar H, Lim TCC, Yin H, Chua V, Khin L-W, Raidy T et al (2005) Multi-voxel MR spectroscopic imaging of the brain: utility in clinical setting-initial results. Eur J Radiol 55:401–408. https://doi.org/10.1016/j.ejrad.2005.01.002
doi: 10.1016/j.ejrad.2005.01.002 pubmed: 16129248
Wörsching J, Padberg F, Goerigk S, Heinz I, Bauer C, Plewnia C et al (2018) Testing assumptions on prefrontal transcranial direct current stimulation: comparison of electrode montages using multimodal fMRI. Brain Stimul 11:998–1007. https://doi.org/10.1016/j.brs.2018.05.001
doi: 10.1016/j.brs.2018.05.001 pubmed: 29759944
Knechtel L, Schall U, Cooper G, Ramadan S, Stanwell P, Jolly T et al (2014) Transcranial direct current stimulation of prefrontal cortex: an auditory event-related potential and proton magnetic resonance spectroscopy study. Neurol Psychiatry Brain Res 20:96–101. https://doi.org/10.1016/j.npbr.2014.06.001
doi: 10.1016/j.npbr.2014.06.001
Kirov II, George IC, Jayawickrama N, Babb JS, Perry NN, Gonen O (2012) Longitudinal inter- and intra-individual human brain metabolic quantification over 3 years with proton MR spectroscopy at 3 T. Magn Reson Med 67:27–33. https://doi.org/10.1002/mrm.23001
doi: 10.1002/mrm.23001 pubmed: 21656555
Schirmer T, Auer DP (2000) On the reliability of quantitative clinical magnetic resonance spectroscopy of the human brain—Schirmer—2000—NMR in Biomedicine—Wiley Online Library. NMR Biomed 2000:28–36
doi: 10.1002/(SICI)1099-1492(200002)13:1<28::AID-NBM606>3.0.CO;2-L
Bogner W, Gruber S, Doelken M, Stadlbauer A, Ganslandt O, Boettcher U et al (2010) In vivo quantification of intracerebral GABA by single-voxel 1H-MRS—how reproducible are the results? Eur J Radiol 73:526–531. https://doi.org/10.1016/j.ejrad.2009.01.014
doi: 10.1016/j.ejrad.2009.01.014 pubmed: 19201120

Auteurs

Eva Mezger (E)

Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.

Boris-Stephan Rauchmann (BS)

Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.
Department of Radiology, University Hospital LMU Munich, Munich, Germany.

Andre R Brunoni (AR)

Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.
Department of Psychiatry and Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, University of Sao Paulo, Sao Paulo, Brazil.

Lucia Bulubas (L)

Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.
International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany.

Axel Thielscher (A)

Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.
Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.

Jana Werle (J)

Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.

Matin Mortazavi (M)

Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.

Temmuz Karali (T)

Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.

Sophia Stöcklein (S)

Department of Radiology, University Hospital LMU Munich, Munich, Germany.

Birgit Ertl-Wagner (B)

Department of Medical Imaging, The Hospital for Sick Children, University of Toronto, Toronto, Canada.

Stephan Goerigk (S)

Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.
Hochschule Fresenius, University of Applied Sciences, Munich, Germany.

Frank Padberg (F)

Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.

Daniel Keeser (D)

Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany. daniel.keeser@med.uni-muenchen.de.
Department of Radiology, University Hospital LMU Munich, Munich, Germany. daniel.keeser@med.uni-muenchen.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH