Generation of novel trimeric fragments of human SP-A and SP-D after recombinant soluble expression in E. coli.
Collectin
Recombinant trimeric fragment
Respiratory distress syndrome
Solubility tag
Surfactant
Surfactant protein A
Surfactant protein D
Therapeutics
Journal
Immunobiology
ISSN: 1878-3279
Titre abrégé: Immunobiology
Pays: Netherlands
ID NLM: 8002742
Informations de publication
Date de publication:
07 2020
07 2020
Historique:
received:
05
04
2020
accepted:
28
04
2020
entrez:
5
8
2020
pubmed:
5
8
2020
medline:
6
8
2021
Statut:
ppublish
Résumé
Surfactant treatment for neonatal respiratory distress syndrome has dramatically improved survival of preterm infants. However, this has resulted in a markedly increased incidence of sequelae such as neonatal chronic inflammatory lung disease. The current surfactant preparations in clinical use lack the natural lung defence proteins surfactant proteins (SP)-A and D. These are known to have anti-inflammatory and anti-infective properties essential for maintaining healthy non-inflamed lungs. Supplementation of currently available animal derived surfactant therapeutics with these anti-inflammatory proteins in the first few days of life could prevent the development of inflammatory lung disease in premature babies. However, current systems for production of recombinant versions of SP-A and SP-D require a complex solubilisation and refolding protocol limiting expression at scale for drug development. Using a novel solubility tag, we describe the expression and purification of recombinant fragments of human (rfh) SP-A and SP-D using Escherichia coli without the need for refolding. We obtained a mean (± SD) of 23.3 (± 5.4) mg and 86 mg (± 3.5) per litre yield of rfhSP-A and rfhSP-D, respectively. rfhSP-D was trimeric and 68% bound to a ManNAc-affinity column, giving a final yield of 57.5 mg/litre of highly pure protein, substantially higher than the 3.3 mg/litre obtained through the standard refolding protocol. Further optimisation of this novel lab based method could potentially make rfhSP-A and rfhSP-D production more commercially feasible to enable development of novel therapeutics for the treatment of lung infection and inflammation.
Identifiants
pubmed: 32747028
pii: S0171-2985(20)30154-6
doi: 10.1016/j.imbio.2020.151953
pmc: PMC7422833
pii:
doi:
Substances chimiques
Receptors, Cell Surface
0
Receptors, Immunologic
0
Recombinant Proteins
0
glycoprotein 340
0
surfactant protein A receptor
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
151953Subventions
Organisme : Medical Research Council
ID : MR/P026907/1
Pays : United Kingdom
Informations de copyright
Copyright © 2020 The Authors. Published by Elsevier GmbH.. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of Competing Interest A patent has been jointly filed by University of Southampton and Spiber Technologies (WO2017109477A2·2017−06-29) on which Alastair Watson, Jens Madsen and Howard Clark are named inventors. The NT technology was developed and is owned by Spiber Technologies.
Références
Nat Rev Immunol. 2005 Jan;5(1):58-68
pubmed: 15630429
Immunobiology. 2017 Feb;222(2):111-118
pubmed: 27793398
Pathogens. 2019 Dec 06;8(4):
pubmed: 31817644
Microb Cell Fact. 2013 Mar 12;12:24
pubmed: 23497240
Eur J Pediatr. 2003 Jul;162(7-8):476-480
pubmed: 12709796
J Immunol. 2010 Jun 1;184(11):6343-9
pubmed: 20435925
Nat Commun. 2014;5:3254
pubmed: 24510122
PLoS One. 2012;7(7):e39392
pubmed: 22808033
J Innate Immun. 2019;11(1):13-28
pubmed: 30293076
Front Biosci (Landmark Ed). 2013 Jun 01;18:1129-40
pubmed: 23747872
Nat Commun. 2017 May 23;8:15504
pubmed: 28534479
PLoS One. 2018 Jun 18;13(6):e0199175
pubmed: 29912941
Int J Biol Macromol. 2018 Jan;106:803-822
pubmed: 28830778
Biochemistry. 1990 Sep 25;29(38):8894-900
pubmed: 2271565
Proc Am Thorac Soc. 2007 Jul;4(3):252-7
pubmed: 17607008
Microb Cell Fact. 2019 Apr 25;18(1):74
pubmed: 31023316
Front Immunol. 2014 Dec 08;5:623
pubmed: 25538707
Biochim Biophys Acta. 2008 Jul-Aug;1778(7-8):1676-95
pubmed: 18515069
Am J Respir Crit Care Med. 2010 May 15;181(10):1098-105
pubmed: 20133924
Am J Respir Crit Care Med. 2020 Jan 1;201(1):83-94
pubmed: 31461630
Front Microbiol. 2014 Mar 05;5:85
pubmed: 24634668
Nat Chem Biol. 2015 May;11(5):309-15
pubmed: 25885958
J Biol Chem. 2001 Jun 8;276(23):19862-70
pubmed: 11279100
J Perinatol. 2000 Oct-Nov;20(7):414-20
pubmed: 11076324
Biochem J. 1986 Mar 1;234(2):381-9
pubmed: 3718473
Structure. 1999 Mar 15;7(3):255-64
pubmed: 10368295
Am J Respir Cell Mol Biol. 1996 Jul;15(1):115-21
pubmed: 8679215
Infect Immun. 2001 Apr;69(4):2728-31
pubmed: 11254642
Mol Immunol. 2009 Sep;46(15):3060-9
pubmed: 19577304
Protein Sci. 1994 Aug;3(8):1143-58
pubmed: 7987210
Immunobiology. 2011 Jan-Feb;216(1-2):72-9
pubmed: 20378199
Neonatology. 2010 Jun;97(4):380-7
pubmed: 20551708
J Biol Chem. 2000 Dec 8;275(49):38848-55
pubmed: 10969075
J Biol Chem. 1996 Aug 2;271(31):18912-9
pubmed: 8756121
Respir Res. 2007 Oct 03;8:70
pubmed: 17915009
Pediatrics. 1993 Aug;92(2):191-6
pubmed: 7710456
Arch Pediatr Adolesc Med. 1997 Feb;151(2):129-34
pubmed: 9041866
Am J Physiol Lung Cell Mol Physiol. 2015 Dec 1;309(11):L1333-43
pubmed: 26432866
PLoS One. 2015 Nov 13;10(11):e0142773
pubmed: 26566142
Biochemistry. 2008 Mar 18;47(11):3407-17
pubmed: 18293938