Two sets of candidate crustacean wing homologues and their implication for the origin of insect wings.


Journal

Nature ecology & evolution
ISSN: 2397-334X
Titre abrégé: Nat Ecol Evol
Pays: England
ID NLM: 101698577

Informations de publication

Date de publication:
12 2020
Historique:
received: 13 07 2019
accepted: 24 06 2020
pubmed: 5 8 2020
medline: 12 1 2021
entrez: 5 8 2020
Statut: ppublish

Résumé

The origin of insect wings is a biological mystery that has fascinated scientists for centuries. Identification of tissues homologous to insect wings from lineages outside of Insecta will provide pivotal information to resolve this conundrum. Here, through expression and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) functional analyses in Parhyale, we show that a gene network similar to the insect wing gene network (preWGN) operates both in the crustacean terga and in the proximal leg segments, suggesting that the evolution of a preWGN precedes the emergence of insect wings, and that from an evo-devo perspective, both of these tissues qualify as potential crustacean wing homologues. Combining these results with recent wing origin studies in insects, we discuss the possibility that both tissues are crustacean wing homologues, which supports a dual evolutionary origin of insect wings (that is, novelty through a merger of two distinct tissues). These outcomes have a crucial impact on the course of the intellectual battle between the two historically competing wing origin hypotheses.

Identifiants

pubmed: 32747770
doi: 10.1038/s41559-020-1257-8
pii: 10.1038/s41559-020-1257-8
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

1694-1702

Commentaires et corrections

Type : CommentIn

Références

Clark-Hachtel, C. M. & Tomoyasu, Y. Exploring the origin of insect wings from an evo-devo perspective. Curr. Opin. Insect Sci. 13, 77–85 (2016).
pubmed: 27436556
Quartau, J. A. An overview of the paranotal theory on the origin of the insect wings. Publicações do Inst. Zool. ‘Dr. Augusto Nobre’. Fac. Cienc. do Porto 194, 1–42 (1986).
Kukalova-Peck, J. Origin of the insect wing and wing articulation from the arthropodan leg. Can. J. Zool. 61, 1618–1669 (1983).
Tomoyasu, Y., Ohde, T. & Clark-Hachtel, C. M. What serial homologs can tell us about the origin of insect wings. F1000Research 6, 268 (2017).
pubmed: 28357056 pmcid: 5357031
Alexander, D. E. in On the Wing: Insects, Pterosaurs, Birds, Bats and the Evolution of Animal Flight 74–102 (Oxford Univ. Press, 2015).
Grodnitsky, D. L. Form and Function of Insect Wings: The Evolution of Biological Structures (The Johns Hopkins Univ. Press, 1999).
Hughes, C. L. & Kaufman, T. C. Hox genes and the evolution of the arthropod body plan. Evol. Dev. 4, 459–499 (2002).
pubmed: 12492146
Wagner, G. P. Homology, Genes, and Evolutionary Innovation (Princeton Univ. Press, 2014).
Ohde, T., Yaginuma, T. & Niimi, T. Insect morphological diversification through the modification of wing serial homologs. Science 340, 495–498 (2013).
pubmed: 23493422
Clark-Hachtel, C. M., Linz, D. M. & Tomoyasu, Y. Insights into insect wing origin provided by functional analysis of vestigial in the red flour beetle, Tribolium castaneum. Proc. Natl Acad. Sci. USA 110, 16951–16956 (2013).
pubmed: 24085843
Medved, V. et al. Origin and diversification of wings: insights from a neopteran insect. Proc. Natl Acad. Sci. USA 112, 15946–15951 (2015).
pubmed: 26668365
Elias-Neto, M. & Belles, X. Tergal and pleural structures contribute to the formation of ectopic prothoracic wings in cockroaches. R. Soc. Open Sci. 3, 160347 (2016).
pubmed: 27853616 pmcid: 5108966
Linz, D. M. & Tomoyasu, Y. Dual evolutionary origin of insect wings supported by an investigation of the abdominal wing serial homologs in Tribolium. Proc. Natl Acad. Sci. USA 115, E658–E667 (2018).
pubmed: 29317537
Tomoyasu, Y. Evo–devo: the double identity of insect wings. Curr. Biol. 28, R75–R77 (2018).
pubmed: 29374449
Clark-Hachtel, C. M., Moe, M. R. & Tomoyasu, Y. Detailed analysis of the prothoracic tissues transforming into wings in the Cephalothorax mutants of the Tribolium beetle. Arthropod Struct. Dev. 47, 352–361 (2018).
pubmed: 29913217
Rehm, E. J., Hannibal, R. L., Chaw, R. C., Vargas-Vila, M. A. & Patel, N. H. The crustacean Parhyale hawaiensis: a new model for arthropod development. Cold Spring Harb. Protoc. 4, (2009).
Serano, J. M. et al. Comprehensive analysis of Hox gene expression in the amphipod crustacean Parhyale hawaiensis. Dev. Biol. 409, 297–309 (2016).
pubmed: 26569556
Martin, A. et al. CRISPR/Cas9 mutagenesis reveals versatile roles of Hox genes in crustacean limb specification and evolution. Curr. Biol. 26, 14–26 (2016).
pubmed: 26687626
Sun, D. A. & Patel, N. H. The amphipod crustacean Parhyale hawaiensis: an emerging comparative model of arthropod development, evolution, and regeneration. Wiley Interdiscip. Rev. Dev. Biol. 8, e355 (2019).
pubmed: 31183976 pmcid: 6772994
Kao, D. et al. The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion. eLife 5, e20062 (2016).
pubmed: 27849518 pmcid: 5111886
Williams, J. A., Bell, J. B. & Carroll, S. B. Control of Drosophila wing and haltere development by the nuclear vestigial gene product. Genes Dev. 5, 2481–2495 (1991).
pubmed: 1752439
Halder, G. et al. The Vestigial and Scalloped proteins act together to directly regulate wing-specific gene expression in Drosophila. Genes Dev. 12, 3900–3909 (1998).
pubmed: 9869643 pmcid: 317267
Kim, J. et al. Integration of positional signals and regulation of wing formation and identity by Drosophila vestigial gene. Nature 382, 133–138 (1996).
pubmed: 8700202
Baena-López, L. A. & García-Bellido, A. Genetic requirements of vestigial in the regulation of Drosophila wing development. Development 130, 197–208 (2003).
pubmed: 12441303
Niwa, N. et al. Evolutionary origin of the insect wing via integration of two developmental modules. Evol. Dev. 12, 168–176 (2010).
pubmed: 20433457
Averof, M. & Cohen, S. M. Evolutionary origin of insect wings from ancestral gills. Nature 385, 627–630 (1997).
pubmed: 9024659
Tomoyasu, Y., Arakane, Y., Kramer, K. J. & Denell, R. E. Repeated co-options of exoskeleton formation during wing-to-elytron evolution in beetles. Curr. Biol. 19, 2057–2065 (2009).
pubmed: 20005109
Ng, M., Diaz-Benjumea, F. J. & Cohen, S. M. nubbin encodes a POU-domain protein required for proximal-distal patterning in the Drosophila wing. Development 121, 589–599 (1995).
pubmed: 7768195
Cifuentes, F. J. & Garcia-Bellido, A. Proximo-distal specification in the wing disc of Drosophila by the nubbin gene. Proc. Natl Acad. Sci. USA. 94, 11405–11410 (1997).
pubmed: 9326622
Turchyn, N., Chesebro, J., Hrycaj, S., Couso, J. P. & Popadić, A. Evolution of nubbin function in hemimetabolous and holometabolous insect appendages. Dev. Biol. 357, 83–95 (2011).
pubmed: 21708143 pmcid: 3178182
Li, H. & Popadić, A. Analysis of nubbin expression patterns in insects. Evol. Dev. 6, 310–324 (2004).
pubmed: 15330864
Prakash, A. & Monteiro, A. apterous A specifies dorsal wing patterns and sexual traits in butterflies. Proc. R. Soc. B 285, 20172685 (2018).
pubmed: 29467265
Brook, W. J., Diaz-Benjumea, F. J. & Cohen, S. M. Organizing spatial pattern in limb development. Annu. Rev. Cell Dev. Biol. 12, 161–180 (1996).
pubmed: 8970725
Zecca, M. & Struhl, G. Control of Drosophila wing growth by the vestigial quadrant enhancer. Development 134, 3011–3020 (2007).
pubmed: 17634191
Browne, W. E., Price, A. L., Gerberding, M. & Patel, N. H. Stages of embryonic development in the amphipod crustacean, Parhyale hawaiensis. Genesis 42, 124–149 (2005).
pubmed: 15986449
Peel, A. The evolution of arthropod segmentation mechanisms. BioEssays 26, 1108–1116 (2004).
pubmed: 15382142
Patel, N. H. et al. Expression of engrailed proteins in arthropods, annelids, and chordates. Cell 58, 955–968 (1989).
pubmed: 2570637
Clark, E., Peel, A. D. & Akam, M. Arthropod segmentation. Development 146, dev170480 (2019).
pubmed: 31554626
Grimm, S. & Pflugfelder, G. O. Control of the gene optomotor-blind in Drosophila wing development by decapentaplegic and wingless. Science 271, 1601–1604 (1996).
pubmed: 8599120
Cook, O., Biehs, B. & Bier, E. brinker and optomotor-blind act coordinately to initiate development of the L5 wing vein primordium in Drosophila. Development 131, 2113–2124 (2004).
pubmed: 15073155
Pflugfelder, G. O., Eichinger, F. & Shen, J. T-box genes in Drosophila limb development. Curr. Top. Dev. Biol. 122, 313–354 (2017).
pubmed: 28057269
Kobayashi, Y. Formation of subcoxae-1 and 2 in insect embryos: the subcoxal theory revisited. Proc. Arthropod. Embryol. Soc. Jpn 48, 33–38 (2017).
Mashimo, Y. & Machida, R. Embryological evidence substantiates the subcoxal theory on the origin of pleuron in insects. Sci. Rep. 7, 12597 (2017).
pubmed: 28974708 pmcid: 5626752
Snodgrass, R. E. in Principles of Insect Morphology 157–192 (Cornell Univ. Press, 1935).
Deuve, T. What is the epipleurite? A contribution to the subcoxal theory as applied to the insect abdomen. Ann. Soc. Entomol. Fr. 54, 1–26 (2018).
Coulcher, J. F., Edgecombe, G. D. & Telford, M. J. Molecular developmental evidence for a subcoxal origin of pleurites in insects and identity of the subcoxa in the gnathal appendages. Sci. Rep. 5, 15757 (2015).
pubmed: 26507752 pmcid: 4623811
Bruce, H. S. & Patel, N. H. Insect wings and body wall evolved from ancient leg segments. Preprint at bioRxiv https://doi.org/10.1101/244541 (2018).
Kukalova-Peck, J. Phylogeny of higher taxa in Insecta: finding synapomorphies in the extant fauna and separating them from homoplasies. Evol. Biol. 35, 4–51 (2008).
Franch-Marro, X., Martín, N., Averof, M. & Casanova, J. Association of tracheal placodes with leg primordia in Drosophila and implications for the origin of insect tracheal systems. Development 133, 785–790 (2006).
pubmed: 16469971
Moczek, A. P. & Rose, D. J. Differential recruitment of limb patterning genes during development and diversification of beetle horns. Proc. Natl Acad. Sci. USA 106, 8992–8997 (2009).
pubmed: 19451631
Fisher, C. R., Wegrzyn, J. L. & Jockusch, E. L. Co-option of wing-patterning genes underlies the evolution of the treehopper helmet. Nat. Ecol. Evol. 4, 250–260 (2020).
pubmed: 31819237
Shiga, Y. et al. Repeated co-option of a conserved gene regulatory module underpins the evolution of the crustacean carapace, insect wings and other flat outgrowths. Preprint at bioRxiv https://doi.org/10.1101/160010 (2017).
Carroll, S. B. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134, 25–36 (2008).
pubmed: 18614008
Knoll, A. H. & Carroll, S. B. Early animal evolution: emerging views from comparative biology and geology. Science 284, 2129–2137 (1999).
pubmed: 10381872
Prokop, J. et al. Paleozoic nymphal wing pads support dual model of insect wing origins. Curr. Biol. 27, 263–269 (2017).
pubmed: 28089512
Requena, D. et al. Origins and specification of the Drosophila wing. Curr. Biol. 27, 3826–3836.e5 (2017).
pubmed: 29225023 pmcid: 5757315
Wagner, G. P. & Lynch, V. J. Evolutionary novelties. Curr. Biol. 20, R48–R52 (2010).
pubmed: 20129035
Monteiro, A. & Podlaha, O. Wings, horns, and butterfly eyespots: how do complex traits evolve? PLoS Biol. 7, e37 (2009).
pubmed: 19243218
Kuratani, S., Kuraku, S. & Nagashima, H. Evolutionary developmental perspective for the origin of turtles: the folding theory for the shell based on the developmental nature of the carapacial ridge. Evol. Dev. 13, 1–14 (2011).
pubmed: 21210938
Lyson, T. R., Bever, G. S., Scheyer, T. M., Hsiang, A. Y. & Gauthier, J. A. Evolutionary origin of the turtle shell. Curr. Biol. 23, 1113–1119 (2013).
pubmed: 23727095
Chuong, C. M., Chodankar, R., Widelitz, R. B. & Jiang, T. X. Evo-devo of feathers and scales: building complex epithelial appendages. Curr. Opin. Genet. Dev. 10, 449–456 (2000).
pubmed: 11023302 pmcid: 4386666
Widelitz, R. B. et al. Molecular biology of feather morphogenesis: a testable model for evo-devo research. J. Exp. Zool. B 298, 109–122 (2003).
Chen, C.-F. et al. Development, regeneration, and evolution of feathers. Annu. Rev. Anim. Biosci. 3, 169–195 (2015).
pubmed: 25387232
Hu, Y., Linz, D. M. & Moczek, A. P. Beetle horns evolved from wing serial homologs. Science 366, 1004–1007 (2019).
pubmed: 31754001
Shubin, N., Tabin, C. & Carroll, S. Deep homology and the origins of evolutionary novelty. Nature 457, 818–823 (2009).
pubmed: 19212399
Rehm, E. J., Hannibal, R. L., Chaw, R. C., Vargas-Vila, M. A. & Patel, N. H. Fixation and dissection of Parhyale hawaiensis embryos. Cold Spring Harb. Protoc. 4, (2009).
Rehm, E. J., Hannibal, R. L., Chaw, R. C., Vargas-Vila, M. A. & Patel, N. H. In situ hybridization of labeled RNA probes to fixed Parhyale hawaiensis embryos. Cold Spring Harb. Protoc. 4 (2009).
Shippy, T. D., Coleman, C. M., Tomoyasu, Y. & Brown, S. J. Concurrent in situ hybridization and antibody staining in red flour beetle (Tribolium) embryos. Cold Spring Harb. Protoc. 4 (2009).
Bassett, A. & Liu, J.-L. CRISPR/Cas9 mediated genome engineering in Drosophila. Methods 69, 128–136 (2014).
pubmed: 24576617
Rehm, E. J., Hannibal, R. L., Chaw, R. C., Vargas-Vila, M. A. & Patel, N. H. Injection of Parhyale hawaiensis blastomeres with fluorescently labeled tracers. Cold Spring Harb. Protoc. 4, (2009).
Gloor, G. & Engels, W. Single-fly DNA preps for PCR. Drosoph. Inf. Newsl. 1, (1991).
Grimaldi, D. & Engels, M. S. Evolution of the Insects (Cambridge Univ. Press, 2005).
Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767 (2014).
pubmed: 25378627

Auteurs

Courtney M Clark-Hachtel (CM)

Department of Biology, Miami University, Oxford, OH, USA.
Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Yoshinori Tomoyasu (Y)

Department of Biology, Miami University, Oxford, OH, USA. tomoyay@miamioh.edu.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH