Avian Pigment Pattern Formation: Developmental Control of Macro- (Across the Body) and Micro- (Within a Feather) Level of Pigment Patterns.
Evo-Devo
color
integument
melanocyte
morphogenesis
regional specificity
skin appendages
stripes
Journal
Frontiers in cell and developmental biology
ISSN: 2296-634X
Titre abrégé: Front Cell Dev Biol
Pays: Switzerland
ID NLM: 101630250
Informations de publication
Date de publication:
2020
2020
Historique:
received:
04
03
2020
accepted:
22
06
2020
entrez:
6
8
2020
pubmed:
6
8
2020
medline:
6
8
2020
Statut:
epublish
Résumé
Animal color patterns are of interest to many fields, such as developmental biology, evolutionary biology, ethology, mathematical biology, bio-mimetics, etc. The skin provides easy access to experimentation and analysis enabling the developmental pigment patterning process to be analyzed at the cellular and molecular level. Studies in animals with distinct pigment patterns (such as zebrafish, horse, feline, etc.) have revealed some genetic information underlying color pattern formation. Yet, how the complex pigment patterns in diverse avian species are established remains an open question. Here we summarize recent progress. Avian plumage shows color patterns occurring at different spatial levels. The two main levels are macro- (across the body) and micro- (within a feather) pigment patterns. At the cellular level, colors are mainly produced by melanocytes generating eumelanin (black) and pheomelanin (yellow, orange). These melanin-based patterns are regulated by melanocyte migration, differentiation, cell death, and/or interaction with neighboring skin cells. In addition, non-melanin chemical pigments and structural colors add more colors to the available palette in different cell types or skin regions. We discuss classic and recent tissue transplantation experiments that explore the avian pigment patterning process and some potential molecular mechanisms. We find color patterns can be controlled autonomously by melanocytes but also non-autonomously by dermal cells. Complex plumage color patterns are generated by the combination of these multi-scale patterning mechanisms. These interactions can be further modulated by environmental factors such as sex hormones, which generate striking sexual dimorphic colors in avian integuments and can also be influenced by seasons and aging.
Identifiants
pubmed: 32754601
doi: 10.3389/fcell.2020.00620
pmc: PMC7365947
doi:
Types de publication
Journal Article
Review
Langues
eng
Pagination
620Subventions
Organisme : NIAMS NIH HHS
ID : R01 AR047364
Pays : United States
Organisme : NIAMS NIH HHS
ID : R01 AR060306
Pays : United States
Informations de copyright
Copyright © 2020 Inaba and Chuong.
Références
Exp Cell Res. 1995 May;218(1):394-400
pubmed: 7737377
Dev Biol. 2020 Apr 1;460(1):70-76
pubmed: 31437441
Heredity (Edinb). 2006 Sep;97(3):222-34
pubmed: 16823403
Development. 2014 Jan;141(2):318-24
pubmed: 24306107
Annu Rev Anim Biosci. 2015;3:169-95
pubmed: 25387232
Int J Mol Sci. 2016 Apr 08;17(4):520
pubmed: 27070583
Cell. 2017 Oct 5;171(2):427-439.e21
pubmed: 28985565
Nature. 2016 Nov 24;539(7630):518-523
pubmed: 27806375
Pigment Cell Melanoma Res. 2015 Mar;28(2):196-209
pubmed: 25469713
Curr Opin Cell Biol. 2014 Aug;29:1-7
pubmed: 24662021
Development. 1995 Oct;121(10):3223-32
pubmed: 7588057
Sci Rep. 2018 Nov 13;8(1):16732
pubmed: 30425278
PLoS Biol. 2019 Oct 2;17(10):e3000448
pubmed: 31577791
Dev Biol. 1974 Jan;36(1):8-23
pubmed: 4822842
Nat Genet. 2016 Feb;48(2):152-8
pubmed: 26691985
Front Genet. 2016 May 31;7:95
pubmed: 27303435
Pigment Cell Melanoma Res. 2016 Jan;29(1):8-14
pubmed: 26247887
Science. 2012 Feb 10;335(6069):677
pubmed: 22323812
Sci Rep. 2016 Dec 02;6:38277
pubmed: 27910904
PLoS Biol. 2019 Mar 25;17(3):e3000195
pubmed: 30908496
Pigment Cell Melanoma Res. 2010 Aug;23(4):521-30
pubmed: 20374521
Curr Top Dev Biol. 2016;117:141-69
pubmed: 26969976
Science. 2018 Sep 21;361(6408):
pubmed: 30237324
Pigment Cell Res. 2003 Aug;16(4):333-44
pubmed: 12859616
Anim Genet. 2003 Aug;34(4):241-8
pubmed: 12873211
Annu Rev Genet. 2019 Dec 3;53:505-530
pubmed: 31509458
Dev Biol. 1985 Sep;111(1):243-55
pubmed: 4029508
J R Soc Interface. 2012 Apr 7;9(69):734-43
pubmed: 21865251
Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):10964-9
pubmed: 16037214
Trends Genet. 2015 Feb;31(2):88-96
pubmed: 25544713
Science. 2012 Sep 21;337(6101):1536-41
pubmed: 22997338
Curr Biol. 2016 Jun 6;26(11):1427-34
pubmed: 27212400
Exp Cell Res. 1993 Jul;207(1):171-82
pubmed: 7686497
Proc Biol Sci. 2002 Apr 22;269(1493):781-92
pubmed: 11958709
Science. 2011 Feb 25;331(6020):1062-5
pubmed: 21350176
Dev Growth Differ. 2019 Jan;61(1):124-138
pubmed: 30569461
Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12576-8
pubmed: 14557541
Mech Dev. 2002 Oct;118(1-2):139-46
pubmed: 12351177
PLoS Biol. 2019 Feb 21;17(2):e3000132
pubmed: 30789897
Mol Ecol. 2017 Feb;26(3):849-858
pubmed: 27988976
Development. 2019 Nov 15;146(22):
pubmed: 31666235
Int J Dev Biol. 2004;48(2-3):181-91
pubmed: 15272383
Proc Natl Acad Sci U S A. 2009 May 26;106(21):8429-34
pubmed: 19433782
Gen Comp Endocrinol. 2012 Jun 1;177(2):231-7
pubmed: 22554923
Dev Biol. 1991 Feb;143(2):309-19
pubmed: 1991554
Science. 2013 Jun 21;340(6139):1442-5
pubmed: 23618762
Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6884-6890
pubmed: 30886106