3D Ordering at the Liquid-Solid Polar Interface of Nanowires.
liquid ordering
liquid-solid interface
nanowires
Journal
Advanced materials (Deerfield Beach, Fla.)
ISSN: 1521-4095
Titre abrégé: Adv Mater
Pays: Germany
ID NLM: 9885358
Informations de publication
Date de publication:
Sep 2020
Sep 2020
Historique:
received:
13
02
2020
revised:
29
06
2020
pubmed:
8
8
2020
medline:
8
8
2020
entrez:
8
8
2020
Statut:
ppublish
Résumé
The nature of the liquid-solid interface determines the characteristics of a variety of physical phenomena, including catalysis, electrochemistry, lubrication, and crystal growth. Most of the established models for crystal growth are based on macroscopic thermodynamics, neglecting the atomistic nature of the liquid-solid interface. Here, experimental observations and molecular dynamics simulations are employed to identify the 3D nature of an atomic-scale ordering of liquid Ga in contact with solid GaAs in a nanowire growth configuration. An interplay between the liquid ordering and the formation of a new bilayer is revealed, which, contrary to the established theories, suggests that the preference for a certain polarity and polytypism is influenced by the atomic structure of the interface. The conclusions of this work open new avenues for the understanding of crystal growth, as well as other processes and systems involving a liquid-solid interface.
Identifiants
pubmed: 32762011
doi: 10.1002/adma.202001030
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2001030Subventions
Organisme : SNF Back-Up Schemes Consolidator
ID : BSC-GI0_157705
Organisme : NCCR QSIT
Organisme : NCCR MARVEL
Organisme : Swiss National Science Foundation
Pays : Switzerland
Organisme : Generalitat de Catalunya
ID : 2017 SGR 327
Organisme : MINECO
ID : ENE2017-85087-C3
Organisme : MINECO
ID : SEV-2017-0706
Organisme : CERCA Programme
Organisme : Generalitat de Catalunya
Organisme : Engineering and Physical Sciences Research Council
Informations de copyright
© 2020 The Authors. Published by Wiley-VCH GmbH.
Références
R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 1964, 4, 89.
C. Y. Wen, J. Tersoff, M. C. Reuter, E. A. Stach, F. M. Ross, Phys. Rev. Lett. 2010, 105, 195502.
J. C. Harmand, G. Patriarche, F. Glas, F. Panciera, I. Florea, J. L. Maurice, L. Travers, Y. Ollivier, Phys. Rev. Lett. 2018, 121, 166101.
F. Glas, J. C. Harmand, G. Patriarche, Phys. Rev. Lett. 2007, 99, 146101.
X. Yuan, P. Caroff, J. Wong-Leung, L. Fu, H. H. Tan, C. Jagadish, Adv. Mater. 2015, 27, 6096.
R. R. Zamani, S. Gorji Ghalamestani, J. Niu, N. Sköld, K. A. Dick, Nanoscale 2017, 9, 3159.
D. Jacobsson, F. Panciera, J. Tersoff, M. C. Reuter, S. Lehmann, S. Hofmann, K. A. Dick, F. M. Ross, Nature 2016, 531, 317.
L. Ghisalberti, H. Potts, M. Friedl, M. Zamani, L. Güniat, G. Tütüncüoglu, W. C. Carter, A. F. I. Morral, Nanotechnology 2019, 30, 285604.
P. Krogstrup, H. I. Jørgensen, E. Johnson, M. H. Madsen, C. B. Sørensen, A. F. I. Morral, M. Aagesen, J. Nygård, F. Glas, J. Phys. D: Appl. Phys. 2013, 46, 313001.
V. G. Dubrovskii, Cryst. Growth Des. 2017, 17, 2544.
J. Q. Broughton, G. H. Gilmer, J. Chem. Phys. 1983, 79, 5095.
H. E. A. Huitema, M. J. Vlot, J. P. Van Der Eerden, J. Chem. Phys. 1999, 111, 4714.
S. Toxvaerd, Faraday Symp. Chem. Soc. 1981, 16, 159.
S. H. Oh, Y. Kauffmann, C. Scheu, W. D. Kaplan, M. Rühle, Science 2005, 310, 661.
M. Gandman, Y. Kauffmann, W. D. Kaplan, Appl. Phys. Lett. 2015, 106, 051603.
Y. Kauffmann, S. H. Oh, C. T. Koch, A. Hashibon, C. Scheu, M. Rühle, W. D. Kaplan, Acta Mater. 2011, 59, 4378.
O. G. Shpyrko, R. Streitel, V. S. K. Balagurusamy, A. Y. Grigoriev, M. Deutsch, B. M. Ocko, M. Meron, B. Lin, P. S. Pershan, Science 2006, 313, 77.
T. U. Schülli, R. Daudin, G. Renaud, A. Vaysset, O. Geaymond, A. Pasturel, Nature 2010, 464, 1174.
R. E. Algra, V. Vonk, D. Wermeille, W. J. Szweryn, M. A. Verheijen, W. J. P. Van Enckevort, A. A. C. Bode, W. L. Noorduin, E. Tancini, A. E. F. De Jong, E. P. A. M. Bakkers, E. Vlieg, Nano Lett. 2011, 11, 44.
C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, A. Fontcuberta, I. Morral, Phys. Rev. B. 2008, 77, 155326.
M. Zamani, G. Tütüncüoglu, S. Martí-Sánchez, L. Francaviglia, L. Güniat, L. Ghisalberti, H. Potts, M. Friedl, E. Markov, W. Kim, J. B. Leran, V. G. Dubrovskii, J. Arbiol, A. Fontcuberta I Morral, Nanoscale 2018, 10, 17080.
N. Bonnet, D. Nuzillard, Ultramicroscopy 2005, 102, 327.
F. de la Peña, M. H. Berger, J. F. Hochepied, F. Dynys, O. Stephan, M. Walls, Ultramicroscopy 2011, 111, 169.
G. Lucas, P. Burdet, M. Cantoni, C. Hébert, Micron 2013, 52-53, 49.
M. Gandman, Y. Kauffmann, W. D. Kaplan, Appl. Phys. Lett. 2015, 106, 051603.
R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, Springer, USA 2011.
W. D. Kaplan, D. Chatain, P. Wynblatt, W. C. Carter, J. Mater. Sci. 2013, 48, 5681.
M. Tang, W. C. Carter, R. M. Cannon, Phys. Rev. B: Condens. Matter Mater. Phys. 2006, 73, 024102.
S. J. Dillon, M. Tang, W. C. Carter, M. P. Harmer, Acta Mater. 2007, 55, 6208.
J. Behler, M. Parrinello, Phys. Rev. Lett. 2007, 98, 146401.
A. Singraber, T. Morawietz, J. Behler, C. Dellago, J. Chem. Theory Comput. 2019, 15, 3075.
P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. De Gironcoli, P. Delugas, R. A. Distasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H. Y. Ko, A. Kokalj, E. Kücükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H. V. Nguyen, A. Otero-De-La-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni, J. Phys. Condens. Matter 2017, 29, 465901.
D. Vanderbilt, Phys. Rev. B 1990, 41, 7892.
S. Plimpton, J. Comput. Phys. 1995, 117, 1.
M. Tuckerman, B. J. Berne, G. J. Martyna, J. Chem. Phys. 1992, 97, 1990.
V. Kapil, M. Rossi, O. Marsalek, R. Petraglia, Y. Litman, T. Spura, B. Cheng, A. Cuzzocrea, R. H. Meißner, D. M. Wilkins, B. A. Helfrecht, P. Juda, S. P. Bienvenue, W. Fang, J. Kessler, I. Poltavsky, S. Vandenbrande, J. Wieme, C. Corminboeuf, T. D. Kühne, D. E. Manolopoulos, T. E. Markland, J. O. Richardson, A. Tkatchenko, G. A. Tribello, V. Van Speybroeck, M. Ceriotti, Comput. Phys. Commun. 2019, 236, 214.
W. J. Hulsman, J. F. Peters, M. J. Zwanenburg, S. A. De Vries, T. E. Derry, D. Abernathy, J. F. Van der Veen, Nature 1997, 390, 379.
J. Arbiol, A. Fontcuberta I Morral, S. Estradé, F. Peiró, B. Kalache, P. Roca I Cabarrocas, J. R. Morante, J. Appl. Phys. 2008, 104, 064312.
L. Jones, H. Yang, T. J. Pennycook, M. S. J. Marshall, S. Van Aert, N. D. Browning, M. R. Castell, P. D. Nellist, Adv. Struct. Chem. Imaging 2015, 1, 8.
M. Ceriotti, G. Bussi, M. Parrinello, J. Chem. Theory Comput. 2010, 6, 1170.
G. Bussi, D. Donadio, M. Parrinello, J. Chem. Phys. 2007, 126, 014101.
P. Raiteri, J. D. Gale, G. Bussi, J. Phys. Condens. Matter 2011, 23, 334213.
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
G. Prandini, A. Marrazzo, I. E. Castelli, N. Mounet, N. Marzari, npj Comput. Mater. 2018, 4, 72.
H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.