Effects of human articular cartilage constituents on simultaneous diffusion of cationic and nonionic contrast agents.
Aged
Bone and Bones
/ metabolism
Cadaver
Cartilage, Articular
/ diagnostic imaging
Cations
Chondrocytes
Contrast Media
/ pharmacokinetics
Diffusion
Female
Gadolinium
/ pharmacokinetics
Heterocyclic Compounds
/ pharmacokinetics
Humans
Knee Joint
/ diagnostic imaging
Male
Organometallic Compounds
/ pharmacokinetics
Proteoglycans
/ chemistry
Spectrophotometry, Infrared
X-Ray Microtomography
collagen
contrast-enhanced
proteoglycan
water
Journal
Journal of orthopaedic research : official publication of the Orthopaedic Research Society
ISSN: 1554-527X
Titre abrégé: J Orthop Res
Pays: United States
ID NLM: 8404726
Informations de publication
Date de publication:
04 2021
04 2021
Historique:
revised:
03
07
2020
received:
04
04
2020
accepted:
05
08
2020
pubmed:
9
8
2020
medline:
18
5
2021
entrez:
9
8
2020
Statut:
ppublish
Résumé
Contrast-enhanced computed tomography is an emerging diagnostic technique for osteoarthritis. However, the effects of increased water content, as well as decreased collagen and proteoglycan concentrations due to cartilage degeneration, on the diffusion of cationic and nonionic agents, are not fully understood. We hypothesize that for a cationic agent, these variations increase the diffusion rate while decreasing partition, whereas, for a nonionic agent, these changes increase both the rate of diffusion and partition. Thus, we examine the diffusion of cationic and nonionic contrast agents within degraded tissue in time- and depth-dependent manners. Osteochondral plugs (N = 15, d = 8 mm) were extracted from human cadaver knee joints, immersed in a mixture of cationic CA4+ and nonionic gadoteridol contrast agents, and imaged at multiple time-points, using the dual-contrast method. Water content, and collagen and proteoglycan concentrations were determined using lyophilization, infrared spectroscopy, and digital densitometry, respectively. Superficial to mid (0%-60% depth) cartilage CA4+ partitions correlated with water content (R < -0.521, P < .05), whereas in deeper (40%-100%) cartilage, CA4+ correlated only with proteoglycans (R > 0.671, P < .01). Gadoteridol partition correlated inversely with collagen concentration (0%-100%, R < -0.514, P < .05). Cartilage degeneration substantially increased the time for CA4+ compared with healthy tissue (248 ± 171 vs 175 ± 95 minute) to reach the bone-cartilage interface, whereas for gadoteridol the time (111 ± 63 vs 179 ± 163 minute) decreased. The work clarifies the diffusion mechanisms of two different contrast agents and presents depth and time-dependent effects resulting from articular cartilage constituents. The results will inform the development of new contrast agents and optimal timing between agent administration and joint imaging.
Identifiants
pubmed: 32767676
doi: 10.1002/jor.24824
pmc: PMC8048551
doi:
Substances chimiques
Cations
0
Contrast Media
0
Heterocyclic Compounds
0
Organometallic Compounds
0
Proteoglycans
0
gadoteridol
0199MV609F
Gadolinium
AU0V1LM3JT
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
771-779Informations de copyright
© 2020 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society.
Références
J Biomech. 2002 Jun;35(6):747-55
pubmed: 12020994
J Biomech. 2016 Jun 14;49(9):1510-1517
pubmed: 27033729
J Am Chem Soc. 2009 Sep 23;131(37):13234-5
pubmed: 19754183
Osteoarthritis Cartilage. 2011 Mar;19(3):295-301
pubmed: 21215317
Osteoarthritis Cartilage. 2014 Jun;22(6):869-78
pubmed: 24769230
J Orthop Res. 2020 Mar;38(3):563-573
pubmed: 31535728
Sci Rep. 2019 May 8;9(1):7118
pubmed: 31068614
J Biomech Eng. 2015 Jul;137(7):
pubmed: 25790039
Psychol Methods. 2007 Dec;12(4):399-413
pubmed: 18179351
Ann Biomed Eng. 2018 Jul;46(7):1038-1046
pubmed: 29654384
Biomech Model Mechanobiol. 2020 Feb;19(1):317-334
pubmed: 31506863
Biophys J. 2014 Jul 15;107(2):485-492
pubmed: 25028890
Cartilage. 2013 Jan;4(1):42-51
pubmed: 26069649
J Orthop Res. 2014 Mar;32(3):403-12
pubmed: 24249683
Osteoarthritis Cartilage. 2006 Mar;14(3):210-4
pubmed: 16271300
Osteoarthritis Cartilage. 1999 Jan;7(1):41-58
pubmed: 10367014
Radiology. 2013 Jan;266(1):141-50
pubmed: 23192774
Rheumatol Int. 2010 Feb;30(4):435-42
pubmed: 19816688
J Orthop Res. 2016 Jul;34(7):1130-8
pubmed: 26697956
Nurs Stand. 2009 Sep 9-15;24(1):35-40
pubmed: 19813379
Semin Cell Dev Biol. 2017 Feb;62:67-77
pubmed: 27422331
Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19255-60
pubmed: 17158799
J Orthop Res. 2019 May;37(5):1059-1070
pubmed: 30816584
J Bone Joint Surg Br. 1968 Feb;50(1):166-77
pubmed: 5641590
J Biomech. 2012 Feb 2;45(3):497-503
pubmed: 22206829
Osteoarthritis Cartilage. 2012 Nov;20(11):1268-77
pubmed: 22858669
J Biomech. 2015 Sep 18;48(12):3369-76
pubmed: 26159056
Osteoarthritis Cartilage. 2015 Dec;23(12):2158-2166
pubmed: 26067518
J Biomed Opt. 2017 Mar 1;22(3):35007
pubmed: 28290599
Ann Biomed Eng. 2017 Dec;45(12):2857-2866
pubmed: 28924827
Osteoarthritis Cartilage. 2011 Aug;19(8):970-6
pubmed: 21549206
Biochem J. 1998 Feb 15;330 ( Pt 1):345-51
pubmed: 9461529
J Bone Joint Surg Am. 1971 Apr;53(3):523-37
pubmed: 5580011
Osteoarthritis Cartilage. 2009 Apr;17(4):448-55
pubmed: 18849174
J Orthop Res. 2021 Apr;39(4):771-779
pubmed: 32767676
J Biomech. 1984;17(5):377-94
pubmed: 6376512
Ann Biomed Eng. 2016 Oct;44(10):2913-2921
pubmed: 27129372
Biomaterials. 1992;13(2):67-97
pubmed: 1550898
J Med Chem. 2017 Jul 13;60(13):5543-5555
pubmed: 28616978
Phys Med Biol. 2009 Nov 21;54(22):6823-36
pubmed: 19864699
Biophys J. 1968 May;8(5):575-95
pubmed: 5699797
Osteoarthritis Cartilage. 2009 Jan;17(1):26-32
pubmed: 18602844
J Orthop Res. 2020 Oct;38(10):2230-2238
pubmed: 32525582
Biophys J. 1970 May;10(5):365-79
pubmed: 4245322
Cells Tissues Organs. 2003;175(3):121-32
pubmed: 14663155
Med Eng Phys. 2013 Oct;35(10):1415-20
pubmed: 23622944
Cartilage. 2012 Oct;3(4):334-41
pubmed: 26069643