Transcriptomic analysis delineates potential signature genes and miRNAs associated with the pathogenesis of asthma.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
07 08 2020
07 08 2020
Historique:
received:
03
02
2020
accepted:
22
07
2020
entrez:
10
8
2020
pubmed:
10
8
2020
medline:
15
12
2020
Statut:
epublish
Résumé
Asthma is a multifarious disease affecting several million people around the world. It has a heterogeneous risk architecture inclusive of both genetic and environmental factors. This heterogeneity can be utilised to identify differentially expressed biomarkers of the disease, which may ultimately aid in the development of more localized and molecularly targeted therapies. In this respect, our study complies with meta-analysis of microarray datasets containing mRNA expression profiles of both asthmatic and control patients, to identify the critical Differentially Expressed Genes (DEGs) involved in the pathogenesis of asthma. We found a total of 30 DEGs out of which 13 were involved in the pathway and functional enrichment analysis. Moreover, 5 DEGs were identified as the hub genes by network centrality-based analysis. Most hub genes were involved in protease/antiprotease pathways. Also, 26 miRNAs and 20 TFs having an association with these hub genes were found to be intricated in a 3-node miRNA Feed-Forward Loop. Out of these, miR-34b and miR-449c were identified as the key miRNAs regulating the expression of SERPINB2 gene and SMAD4 transcription factor. Thus, our study is suggestive of certain miRNAs and unexplored pathways which may pave a way to unravel critical therapeutic targets in asthma.
Identifiants
pubmed: 32770056
doi: 10.1038/s41598-020-70368-5
pii: 10.1038/s41598-020-70368-5
pmc: PMC7414199
doi:
Substances chimiques
MicroRNAs
0
Types de publication
Journal Article
Meta-Analysis
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
13354Références
Enarson, D. Respiratory Diseases in the World: Realities of Today—Opportunities for Tomorrow: Forum of International Respiratory Societies (European Respiratory Society, Sheffield, 2013).
Holgate, S. T. Pathogenesis of asthma. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol.38(6), 872–897. https://doi.org/10.1111/j.1365-2222.2008.02971.x (2008).
doi: 10.1111/j.1365-2222.2008.02971.x
Brightling, C. E. et al. Mast-cell infiltration of airway smooth muscle in asthma. N. Engl. J. Med.346(22), 1699–1705. https://doi.org/10.1056/NEJMoa012705 (2002).
doi: 10.1056/NEJMoa012705
pubmed: 12037149
Munakata, M. Airway remodeling and airway smooth muscle in asthma. Allergol. Int.55(3), 235–243. https://doi.org/10.2332/allergolint.55.235 (2006).
doi: 10.2332/allergolint.55.235
pubmed: 17075263
James, A. L. et al. Airway smooth muscle hypertrophy and hyperplasia in asthma. Am. J. Respir. Crit. Care Med.185(10), 1058–1064. https://doi.org/10.1164/rccm.201110-1849OC (2012).
doi: 10.1164/rccm.201110-1849OC
pubmed: 22403800
Wenzel, S. E. Asthma: defining of the persistent adult phenotypes. Lancet368(9537), 804–813. https://doi.org/10.1016/S0140-6736(06)69290-8 (2006).
doi: 10.1016/S0140-6736(06)69290-8
pubmed: 16935691
de Nijs, S. B., Venekamp, L. N. & Bel, E. H. Adult-onset asthma: is it really different?. Eur. Respir. Rev.22(127), 44–52. https://doi.org/10.1183/09059180.00007112 (2013).
doi: 10.1183/09059180.00007112
pubmed: 23457164
Ray, A., Oriss, T. B. & Wenzel, S. E. Emerging molecular phenotypes of asthma. Am. J. Physiol. Lung Cell. Mol. Physiol.308(2), L130-140. https://doi.org/10.1152/ajplung.00070.2014 (2015).
doi: 10.1152/ajplung.00070.2014
pubmed: 25326577
Robinson, D. S. et al. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N. Engl. J. Med.326(5), 298–304. https://doi.org/10.1056/NEJM199201303260504 (1992).
doi: 10.1056/NEJM199201303260504
pubmed: 1530827
Wenzel, S. E. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat. Med.18(5), 716–725. https://doi.org/10.1038/nm.2678 (2012).
doi: 10.1038/nm.2678
pubmed: 22561835
Krug, N. et al. T-cell cytokine profile evaluated at the single cell level in BAL and blood in allergic asthma. Am. J. Respir. Cell Mol. Biol.14(4), 319–326. https://doi.org/10.1165/ajrcmb.14.4.8600935 (1996).
doi: 10.1165/ajrcmb.14.4.8600935
pubmed: 8600935
Kelly, E. A., Rodriguez, R. R., Busse, W. W. & Jarjour, N. N. The effect of segmental bronchoprovocation with allergen on airway lymphocyte function. Am. J. Respir. Crit. Care Med.156(5), 1421–1428. https://doi.org/10.1164/ajrccm.156.5.9703054 (1997).
doi: 10.1164/ajrccm.156.5.9703054
pubmed: 9372655
Raman, K. Construction and analysis of protein-protein interaction networks. Autom. Exp.2(1), 2. https://doi.org/10.1186/1759-4499-2-2 (2010).
doi: 10.1186/1759-4499-2-2
pubmed: 20334628
pmcid: 2834675
Chen, S.-J., Liao, D.-L., Chen, C.-H., Wang, T.-Y. & Chen, K.-C. Construction and analysis of protein-protein interaction network of heroin use disorder. Sci. Rep.9(1), 4980. https://doi.org/10.1038/s41598-019-41552-z (2019).
doi: 10.1038/s41598-019-41552-z
pubmed: 30899073
pmcid: 6428805
Estrada, E. Virtual identification of essential proteins within the protein interaction network of yeast. Proteomics6(1), 35–40. https://doi.org/10.1002/pmic.200500209 (2006).
doi: 10.1002/pmic.200500209
pubmed: 16281187
Jeong, H., Mason, S. P., Barabási, A.-L. & Oltvai, Z. N. Lethality and centrality in protein networks. Nature411(6833), 41–42. https://doi.org/10.1038/35075138 (2001).
doi: 10.1038/35075138
pubmed: 11333967
Shalgi, R., Brosh, R., Oren, M., Pilpel, Y. & Rotter, V. Coupling transcriptional and post-transcriptional miRNA regulation in the control of cell fate. Aging1(9), 762–770. https://doi.org/10.18632/aging.100085 (2009).
doi: 10.18632/aging.100085
pubmed: 20157565
pmcid: 2815735
Shalgi, R., Lieber, D., Oren, M. & Pilpel, Y. Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Comput. Biol.3(7), e131. https://doi.org/10.1371/journal.pcbi.0030131 (2007).
doi: 10.1371/journal.pcbi.0030131
pubmed: 17630826
pmcid: 1914371
Harkema, J. R., Carey, S. A. & Wagner, J. G. The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. Toxicol. Pathol.34(3), 252–269. https://doi.org/10.1080/01926230600713475 (2006).
doi: 10.1080/01926230600713475
pubmed: 16698724
Wu, Q., Qin, H., Zhao, Q. & He, X.-X. Emerging role of transcription factor-microRNA-target gene feed-forward loops in cancer. Biomed. Rep.3(5), 611–616. https://doi.org/10.3892/br.2015.477 (2015).
doi: 10.3892/br.2015.477
pubmed: 26405533
pmcid: 4535151
Liu, J. et al. Identification of hub genes and pathways associated with hepatocellular carcinoma based on network strategy. Exp. Ther. Med.12(4), 2109–2119. https://doi.org/10.3892/etm.2016.3599 (2016).
doi: 10.3892/etm.2016.3599
pubmed: 27703495
pmcid: 5039750
Poole, A. et al. Dissecting childhood asthma with nasal transcriptomics distinguishes subphenotypes of disease. J. Allergy Clin. Immunol.133(3), 670-678.e12. https://doi.org/10.1016/j.jaci.2013.11.025 (2014).
doi: 10.1016/j.jaci.2013.11.025
pubmed: 24495433
pmcid: 4043390
Singhania, A. et al. Multitissue Transcriptomics Delineates the Diversity of Airway T Cell Functions in Asthma. Am. J. Respir. Cell Mol. Biol.58(2), 261–270. https://doi.org/10.1165/rcmb.2017-0162OC (2018).
doi: 10.1165/rcmb.2017-0162OC
pubmed: 28933920
pmcid: 5805998
Henskens, Y. M., Veerman, E. C. & Nieuw Amerongen, A. V. Cystatins in health and disease. Biol. Chem. Hoppe. Seyler377(2), 71–86. https://doi.org/10.1515/bchm3.1996.377.2.71 (1996).
doi: 10.1515/bchm3.1996.377.2.71
pubmed: 8868064
Bonser, L. R. & Erle, D. J. Airway Mucus and Asthma: the role of MUC5AC and MUC5B. J. Clin. Med.6(12), 112. https://doi.org/10.3390/jcm6120112 (2017).
doi: 10.3390/jcm6120112
pmcid: 5742801
Fang, F. et al. Identification of potential transcriptomic markers in developing asthma: An integrative analysis of gene expression profiles. Mol. Immunol.92, 38–44. https://doi.org/10.1016/j.molimm.2017.09.021 (2017).
doi: 10.1016/j.molimm.2017.09.021
pubmed: 29031950
Nie, X. et al. Consistent biomarkers and related pathogenesis underlying asthma revealed by systems biology approach. Int. J. Mol. Sci.20(16), 4037. https://doi.org/10.3390/ijms20164037 (2019).
doi: 10.3390/ijms20164037
pmcid: 6720652
Fernández-Delgado, L. et al. Allergens induce the release of lactoferrin by neutrophils from asthmatic patients. PLoS ONE10(10), e0141278. https://doi.org/10.1371/journal.pone.0141278 (2015).
doi: 10.1371/journal.pone.0141278
pubmed: 26488881
pmcid: 4619071
Kruzel, M. L., Bacsi, A., Choudhury, B., Sur, S. & Boldogh, I. Lactoferrin decreases pollen antigen-induced allergic airway inflammation in a murine model of asthma. Immunology119(2), 159–166. https://doi.org/10.1111/j.1365-2567.2006.02417.x (2006).
doi: 10.1111/j.1365-2567.2006.02417.x
pubmed: 16800860
pmcid: 1782357
Kucharewicz, I., Kowal, K., Buczko, W. & Bodzenta-Łukaszyk, A. The plasmin system in airway remodeling. Thromb. Res.112(1–2), 1–7. https://doi.org/10.1016/j.thromres.2003.10.011 (2003).
doi: 10.1016/j.thromres.2003.10.011
pubmed: 15013265
Woodruff, P. G. et al. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am. J. Respir. Crit. Care Med.180(5), 388–395. https://doi.org/10.1164/rccm.200903-0392OC (2009).
doi: 10.1164/rccm.200903-0392OC
pubmed: 19483109
pmcid: 2742757
Mertens, T. C. J., Hiemstra, P. S. & Taube, C. Azithromycin differentially affects the IL-13-induced expression profile in human bronchial epithelial cells. Pulm. Pharmacol. Ther.39, 14–20. https://doi.org/10.1016/j.pupt.2016.05.005 (2016).
doi: 10.1016/j.pupt.2016.05.005
pubmed: 27246785
Kuperman, D. A. et al. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat. Med.8(8), 885–889. https://doi.org/10.1038/nm734 (2002).
doi: 10.1038/nm734
pubmed: 12091879
Shamji, M. H. et al. Antiapoptotic serine protease inhibitors contribute to survival of allergenic T H 2 cells. J. Allergy Clin. Immunol.142(2), 569-581.e5. https://doi.org/10.1016/j.jaci.2017.07.055 (2018).
doi: 10.1016/j.jaci.2017.07.055
pubmed: 29106998
Sivaprasad, U. et al. SERPINB3/B4 contributes to early inflammation and barrier dysfunction in an experimental murine model of atopic dermatitis. J. Invest. Dermatol.135(1), 160–169. https://doi.org/10.1038/jid.2014.353 (2015).
doi: 10.1038/jid.2014.353
pubmed: 25111616
Ray, R. et al. Uteroglobin suppresses SCCA gene expression associated with allergic asthma. J. Biol. Chem.280(11), 9761–9764. https://doi.org/10.1074/jbc.C400581200 (2005).
doi: 10.1074/jbc.C400581200
pubmed: 15677460
Johnson, P. R. A. et al. Connective tissue growth factor induces extracellular matrix in asthmatic airway smooth muscle. Am. J. Respir. Crit. Care Med.173(1), 32–41. https://doi.org/10.1164/rccm.200406-703OC (2006).
doi: 10.1164/rccm.200406-703OC
pubmed: 16179645
Wang, A. et al. Cutting edge: Smad2 and Smad4 regulate TGF-β–mediated Il9 gene expression via EZH2 displacement. J. Immunol.191(10), 4908–4912. https://doi.org/10.4049/jimmunol.1300433 (2013).
doi: 10.4049/jimmunol.1300433
pubmed: 24108699
Tidin, O., Friman, E. T., Naef, F. & Suter, D. M. Quantitative relationships between SMAD dynamics and target gene activation kinetics in single live cells. Sci. Rep.9(1), 5372. https://doi.org/10.1038/s41598-019-41870-2 (2019).
doi: 10.1038/s41598-019-41870-2
pubmed: 30926874
pmcid: 6440972
Wortley, M. A. & Bonvini, S. J. Transforming growth factor-β1: a novel cause of resistance to bronchodilators in Asthma?. Am. J. Respir. Cell Mol. Biol.61(2), 134–135. https://doi.org/10.1165/rcmb.2019-0020ED (2019).
doi: 10.1165/rcmb.2019-0020ED
pubmed: 30768914
pmcid: 6670036
Kim, Y. H. & Lee, S.-H. TGF-β/SMAD4 mediated UCP2 downregulation contributes to Aspergillus protease-induced inflammation in primary bronchial epithelial cells. Redox Biol.18, 104–113. https://doi.org/10.1016/j.redox.2018.06.011 (2018).
doi: 10.1016/j.redox.2018.06.011
pubmed: 30007886
pmcid: 6067066
Solberg, O. D. et al. Airway epithelial miRNA expression is altered in asthma. Am. J. Respir. Crit. Care Med.186(10), 965–974. https://doi.org/10.1164/rccm.201201-0027OC (2012).
doi: 10.1164/rccm.201201-0027OC
pubmed: 22955319
pmcid: 3530212
Marcet, B. et al. Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway. Nat. Cell Biol.13(6), 693–699. https://doi.org/10.1038/ncb2241 (2011).
doi: 10.1038/ncb2241
pubmed: 21602795
Yin, H. et al. MicroRNA-34/449 targets IGFBP-3 and attenuates airway remodeling by suppressing Nur77-mediated autophagy. Cell Death Dis.8(8), e2998. https://doi.org/10.1038/cddis.2017.357 (2017).
doi: 10.1038/cddis.2017.357
pubmed: 28796252
pmcid: 5596548
Clough, E. & Barrett, T. The Gene Expression Omnibus Database. Methods Mol. Biol. Clifton NJ1418, 93–110. https://doi.org/10.1007/978-1-4939-3578-9_5 (2016).
doi: 10.1007/978-1-4939-3578-9_5
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & for the PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ339, b2535–b2535. https://doi.org/10.1136/bmj.b2535 (2009).
doi: 10.1136/bmj.b2535
pubmed: 19622551
pmcid: 2714657
Davis, S. & Meltzer, P. S. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinforma. Oxf. Engl.23(14), 1846–1847. https://doi.org/10.1093/bioinformatics/btm254 (2007).
doi: 10.1093/bioinformatics/btm254
Irizarry, R. A. et al. Summaries of Affymetrix GeneChip probe level data. Nucl. Acids Res.31(4), e15. https://doi.org/10.1093/nar/gng015 (2003).
doi: 10.1093/nar/gng015
pubmed: 12582260
Gray, K. A., Seal, R. L., Tweedie, S., Wright, M. W. & Bruford, E. A. A review of the new HGNC gene family resource. Hum. Genomics10, 6. https://doi.org/10.1186/s40246-016-0062-6 (2016).
doi: 10.1186/s40246-016-0062-6
pubmed: 26842383
pmcid: 4739092
Ahmad, S. et al. Transcriptome meta-analysis deciphers a dysregulation in immune response-associated gene signatures during sepsis. Genes10(12), 1005. https://doi.org/10.3390/genes10121005 (2019).
doi: 10.3390/genes10121005
pmcid: 6947644
Shriwash, N. et al. Identification of differentially expressed genes in small and non-small cell lung cancer based on meta-analysis of mRNA. Heliyon5(6), e01707. https://doi.org/10.1016/j.heliyon.2019.e01707 (2019).
doi: 10.1016/j.heliyon.2019.e01707
pubmed: 31338439
pmcid: 6580189
Marot, G., Foulley, J.-L., Mayer, C.-D. & Jaffrézic, F. Moderated effect size and P-value combinations for microarray meta-analyses. Bioinforma. Oxf. Engl.25(20), 2692–2699. https://doi.org/10.1093/bioinformatics/btp444 (2009).
doi: 10.1093/bioinformatics/btp444
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucl. Acids Res.43(7), e47–e47. https://doi.org/10.1093/nar/gkv007 (2015).
doi: 10.1093/nar/gkv007
pubmed: 25605792
Fisher, R. A. Statistical Methods for Research Workers. In Breakthroughs in Statistics (eds Kotz, S. & Johnson, N. L.) 66–70 (Springer, New York, NY, 1992).
doi: 10.1007/978-1-4612-4380-9_6
Benjamini, Y. Discovering the false discovery rate: False Discovery Rate. J. R. Stat. Soc. Ser. B Stat. Methodol.72(4), 405–416. https://doi.org/10.1111/j.1467-9868.2010.00746.x (2010).
doi: 10.1111/j.1467-9868.2010.00746.x
Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform.14, 128. https://doi.org/10.1186/1471-2105-14-128 (2013).
doi: 10.1186/1471-2105-14-128
Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucl. Acids Res.44(W1), W90-97. https://doi.org/10.1093/nar/gkw377 (2016).
doi: 10.1093/nar/gkw377
pubmed: 27141961
Oughtred, R. et al. The BioGRID interaction database: 2019 update. Nucl. Acids Res.47(D1), D529–D541. https://doi.org/10.1093/nar/gky1079 (2019).
doi: 10.1093/nar/gky1079
pubmed: 30476227
Alanis-Lobato, G., Andrade-Navarro, M. A. & Schaefer, M. H. HIPPIE v2.0: enhancing meaningfulness and reliability of protein–protein interaction networks. Nucl. Acids Res.45(D1), D408–D414. https://doi.org/10.1093/nar/gkw985 (2017).
doi: 10.1093/nar/gkw985
pubmed: 27794551
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res.13(11), 2498–2504. https://doi.org/10.1101/gr.1239303 (2003).
doi: 10.1101/gr.1239303
pubmed: 14597658
pmcid: 403769
Sriroopreddy, R., Sajeed, R., Raghuraman, P., Sudandiradoss, C. Differentially expressed gene (DEG) based protein-protein interaction (PPI) network identifies a spectrum of gene interactome, transcriptome and correlated miRNA in nondisjunction Down syndrome. Int. J. Biol. Macromol.122, 1080–1089. https://doi.org/10.1016/j.ijbiomac.2018.09.056 (2019).
doi: 10.1016/j.ijbiomac.2018.09.056
pubmed: 30218739
Sticht, C., De La Torre, C., Parveen, A. & Gretz, N. miRWalk: An online resource for prediction of microRNA binding sites. PLoS ONE13(10), e0206239. https://doi.org/10.1371/journal.pone.0206239 (2018).
doi: 10.1371/journal.pone.0206239
pubmed: 30335862
pmcid: 6193719
Açıcı, K., Terzi, Y. K. & Oğul, H. Retrieving relevant experiments: The case of microRNA microarrays. Biosystems134, 71–78. https://doi.org/10.1016/j.biosystems.2015.06.003 (2015).
doi: 10.1016/j.biosystems.2015.06.003
pubmed: 26116091
Li, J.-H., Liu, S., Zhou, H., Qu, L.-H. & Yang, J.-H. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucl. Acids Res.42(D1), D92–D97. https://doi.org/10.1093/nar/gkt1248 (2014).
doi: 10.1093/nar/gkt1248
pubmed: 24297251
Zhou, K.-R. et al. ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data. Nucl. Acids Res.45(D1), D43–D50. https://doi.org/10.1093/nar/gkw965 (2017).
doi: 10.1093/nar/gkw965
pubmed: 27924033
Zheng, G. et al. ITFP: an integrated platform of mammalian transcription factors. Bioinforma. Oxf. Engl.24(20), 2416–2417. https://doi.org/10.1093/bioinformatics/btn439 (2008).
doi: 10.1093/bioinformatics/btn439
Sun, J., Gong, X., Purow, B. & Zhao, Z. Uncovering microRNA and transcription factor mediated regulatory networks in glioblastoma. PLoS Comput. Biol.8(7), e1002488. https://doi.org/10.1371/journal.pcbi.1002488 (2012).
doi: 10.1371/journal.pcbi.1002488
pubmed: 22829753
pmcid: 3400583