Transcriptomic analysis delineates potential signature genes and miRNAs associated with the pathogenesis of asthma.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
07 08 2020
Historique:
received: 03 02 2020
accepted: 22 07 2020
entrez: 10 8 2020
pubmed: 10 8 2020
medline: 15 12 2020
Statut: epublish

Résumé

Asthma is a multifarious disease affecting several million people around the world. It has a heterogeneous risk architecture inclusive of both genetic and environmental factors. This heterogeneity can be utilised to identify differentially expressed biomarkers of the disease, which may ultimately aid in the development of more localized and molecularly targeted therapies. In this respect, our study complies with meta-analysis of microarray datasets containing mRNA expression profiles of both asthmatic and control patients, to identify the critical Differentially Expressed Genes (DEGs) involved in the pathogenesis of asthma. We found a total of 30 DEGs out of which 13 were involved in the pathway and functional enrichment analysis. Moreover, 5 DEGs were identified as the hub genes by network centrality-based analysis. Most hub genes were involved in protease/antiprotease pathways. Also, 26 miRNAs and 20 TFs having an association with these hub genes were found to be intricated in a 3-node miRNA Feed-Forward Loop. Out of these, miR-34b and miR-449c were identified as the key miRNAs regulating the expression of SERPINB2 gene and SMAD4 transcription factor. Thus, our study is suggestive of certain miRNAs and unexplored pathways which may pave a way to unravel critical therapeutic targets in asthma.

Identifiants

pubmed: 32770056
doi: 10.1038/s41598-020-70368-5
pii: 10.1038/s41598-020-70368-5
pmc: PMC7414199
doi:

Substances chimiques

MicroRNAs 0

Types de publication

Journal Article Meta-Analysis Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

13354

Références

Enarson, D. Respiratory Diseases in the World: Realities of Today—Opportunities for Tomorrow: Forum of International Respiratory Societies (European Respiratory Society, Sheffield, 2013).
Holgate, S. T. Pathogenesis of asthma. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol.38(6), 872–897. https://doi.org/10.1111/j.1365-2222.2008.02971.x (2008).
doi: 10.1111/j.1365-2222.2008.02971.x
Brightling, C. E. et al. Mast-cell infiltration of airway smooth muscle in asthma. N. Engl. J. Med.346(22), 1699–1705. https://doi.org/10.1056/NEJMoa012705 (2002).
doi: 10.1056/NEJMoa012705 pubmed: 12037149
Munakata, M. Airway remodeling and airway smooth muscle in asthma. Allergol. Int.55(3), 235–243. https://doi.org/10.2332/allergolint.55.235 (2006).
doi: 10.2332/allergolint.55.235 pubmed: 17075263
James, A. L. et al. Airway smooth muscle hypertrophy and hyperplasia in asthma. Am. J. Respir. Crit. Care Med.185(10), 1058–1064. https://doi.org/10.1164/rccm.201110-1849OC (2012).
doi: 10.1164/rccm.201110-1849OC pubmed: 22403800
Wenzel, S. E. Asthma: defining of the persistent adult phenotypes. Lancet368(9537), 804–813. https://doi.org/10.1016/S0140-6736(06)69290-8 (2006).
doi: 10.1016/S0140-6736(06)69290-8 pubmed: 16935691
de Nijs, S. B., Venekamp, L. N. & Bel, E. H. Adult-onset asthma: is it really different?. Eur. Respir. Rev.22(127), 44–52. https://doi.org/10.1183/09059180.00007112 (2013).
doi: 10.1183/09059180.00007112 pubmed: 23457164
Ray, A., Oriss, T. B. & Wenzel, S. E. Emerging molecular phenotypes of asthma. Am. J. Physiol. Lung Cell. Mol. Physiol.308(2), L130-140. https://doi.org/10.1152/ajplung.00070.2014 (2015).
doi: 10.1152/ajplung.00070.2014 pubmed: 25326577
Robinson, D. S. et al. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N. Engl. J. Med.326(5), 298–304. https://doi.org/10.1056/NEJM199201303260504 (1992).
doi: 10.1056/NEJM199201303260504 pubmed: 1530827
Wenzel, S. E. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat. Med.18(5), 716–725. https://doi.org/10.1038/nm.2678 (2012).
doi: 10.1038/nm.2678 pubmed: 22561835
Krug, N. et al. T-cell cytokine profile evaluated at the single cell level in BAL and blood in allergic asthma. Am. J. Respir. Cell Mol. Biol.14(4), 319–326. https://doi.org/10.1165/ajrcmb.14.4.8600935 (1996).
doi: 10.1165/ajrcmb.14.4.8600935 pubmed: 8600935
Kelly, E. A., Rodriguez, R. R., Busse, W. W. & Jarjour, N. N. The effect of segmental bronchoprovocation with allergen on airway lymphocyte function. Am. J. Respir. Crit. Care Med.156(5), 1421–1428. https://doi.org/10.1164/ajrccm.156.5.9703054 (1997).
doi: 10.1164/ajrccm.156.5.9703054 pubmed: 9372655
Raman, K. Construction and analysis of protein-protein interaction networks. Autom. Exp.2(1), 2. https://doi.org/10.1186/1759-4499-2-2 (2010).
doi: 10.1186/1759-4499-2-2 pubmed: 20334628 pmcid: 2834675
Chen, S.-J., Liao, D.-L., Chen, C.-H., Wang, T.-Y. & Chen, K.-C. Construction and analysis of protein-protein interaction network of heroin use disorder. Sci. Rep.9(1), 4980. https://doi.org/10.1038/s41598-019-41552-z (2019).
doi: 10.1038/s41598-019-41552-z pubmed: 30899073 pmcid: 6428805
Estrada, E. Virtual identification of essential proteins within the protein interaction network of yeast. Proteomics6(1), 35–40. https://doi.org/10.1002/pmic.200500209 (2006).
doi: 10.1002/pmic.200500209 pubmed: 16281187
Jeong, H., Mason, S. P., Barabási, A.-L. & Oltvai, Z. N. Lethality and centrality in protein networks. Nature411(6833), 41–42. https://doi.org/10.1038/35075138 (2001).
doi: 10.1038/35075138 pubmed: 11333967
Shalgi, R., Brosh, R., Oren, M., Pilpel, Y. & Rotter, V. Coupling transcriptional and post-transcriptional miRNA regulation in the control of cell fate. Aging1(9), 762–770. https://doi.org/10.18632/aging.100085 (2009).
doi: 10.18632/aging.100085 pubmed: 20157565 pmcid: 2815735
Shalgi, R., Lieber, D., Oren, M. & Pilpel, Y. Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Comput. Biol.3(7), e131. https://doi.org/10.1371/journal.pcbi.0030131 (2007).
doi: 10.1371/journal.pcbi.0030131 pubmed: 17630826 pmcid: 1914371
Harkema, J. R., Carey, S. A. & Wagner, J. G. The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. Toxicol. Pathol.34(3), 252–269. https://doi.org/10.1080/01926230600713475 (2006).
doi: 10.1080/01926230600713475 pubmed: 16698724
Wu, Q., Qin, H., Zhao, Q. & He, X.-X. Emerging role of transcription factor-microRNA-target gene feed-forward loops in cancer. Biomed. Rep.3(5), 611–616. https://doi.org/10.3892/br.2015.477 (2015).
doi: 10.3892/br.2015.477 pubmed: 26405533 pmcid: 4535151
Liu, J. et al. Identification of hub genes and pathways associated with hepatocellular carcinoma based on network strategy. Exp. Ther. Med.12(4), 2109–2119. https://doi.org/10.3892/etm.2016.3599 (2016).
doi: 10.3892/etm.2016.3599 pubmed: 27703495 pmcid: 5039750
Poole, A. et al. Dissecting childhood asthma with nasal transcriptomics distinguishes subphenotypes of disease. J. Allergy Clin. Immunol.133(3), 670-678.e12. https://doi.org/10.1016/j.jaci.2013.11.025 (2014).
doi: 10.1016/j.jaci.2013.11.025 pubmed: 24495433 pmcid: 4043390
Singhania, A. et al. Multitissue Transcriptomics Delineates the Diversity of Airway T Cell Functions in Asthma. Am. J. Respir. Cell Mol. Biol.58(2), 261–270. https://doi.org/10.1165/rcmb.2017-0162OC (2018).
doi: 10.1165/rcmb.2017-0162OC pubmed: 28933920 pmcid: 5805998
Henskens, Y. M., Veerman, E. C. & Nieuw Amerongen, A. V. Cystatins in health and disease. Biol. Chem. Hoppe. Seyler377(2), 71–86. https://doi.org/10.1515/bchm3.1996.377.2.71 (1996).
doi: 10.1515/bchm3.1996.377.2.71 pubmed: 8868064
Bonser, L. R. & Erle, D. J. Airway Mucus and Asthma: the role of MUC5AC and MUC5B. J. Clin. Med.6(12), 112. https://doi.org/10.3390/jcm6120112 (2017).
doi: 10.3390/jcm6120112 pmcid: 5742801
Fang, F. et al. Identification of potential transcriptomic markers in developing asthma: An integrative analysis of gene expression profiles. Mol. Immunol.92, 38–44. https://doi.org/10.1016/j.molimm.2017.09.021 (2017).
doi: 10.1016/j.molimm.2017.09.021 pubmed: 29031950
Nie, X. et al. Consistent biomarkers and related pathogenesis underlying asthma revealed by systems biology approach. Int. J. Mol. Sci.20(16), 4037. https://doi.org/10.3390/ijms20164037 (2019).
doi: 10.3390/ijms20164037 pmcid: 6720652
Fernández-Delgado, L. et al. Allergens induce the release of lactoferrin by neutrophils from asthmatic patients. PLoS ONE10(10), e0141278. https://doi.org/10.1371/journal.pone.0141278 (2015).
doi: 10.1371/journal.pone.0141278 pubmed: 26488881 pmcid: 4619071
Kruzel, M. L., Bacsi, A., Choudhury, B., Sur, S. & Boldogh, I. Lactoferrin decreases pollen antigen-induced allergic airway inflammation in a murine model of asthma. Immunology119(2), 159–166. https://doi.org/10.1111/j.1365-2567.2006.02417.x (2006).
doi: 10.1111/j.1365-2567.2006.02417.x pubmed: 16800860 pmcid: 1782357
Kucharewicz, I., Kowal, K., Buczko, W. & Bodzenta-Łukaszyk, A. The plasmin system in airway remodeling. Thromb. Res.112(1–2), 1–7. https://doi.org/10.1016/j.thromres.2003.10.011 (2003).
doi: 10.1016/j.thromres.2003.10.011 pubmed: 15013265
Woodruff, P. G. et al. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am. J. Respir. Crit. Care Med.180(5), 388–395. https://doi.org/10.1164/rccm.200903-0392OC (2009).
doi: 10.1164/rccm.200903-0392OC pubmed: 19483109 pmcid: 2742757
Mertens, T. C. J., Hiemstra, P. S. & Taube, C. Azithromycin differentially affects the IL-13-induced expression profile in human bronchial epithelial cells. Pulm. Pharmacol. Ther.39, 14–20. https://doi.org/10.1016/j.pupt.2016.05.005 (2016).
doi: 10.1016/j.pupt.2016.05.005 pubmed: 27246785
Kuperman, D. A. et al. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat. Med.8(8), 885–889. https://doi.org/10.1038/nm734 (2002).
doi: 10.1038/nm734 pubmed: 12091879
Shamji, M. H. et al. Antiapoptotic serine protease inhibitors contribute to survival of allergenic T H 2 cells. J. Allergy Clin. Immunol.142(2), 569-581.e5. https://doi.org/10.1016/j.jaci.2017.07.055 (2018).
doi: 10.1016/j.jaci.2017.07.055 pubmed: 29106998
Sivaprasad, U. et al. SERPINB3/B4 contributes to early inflammation and barrier dysfunction in an experimental murine model of atopic dermatitis. J. Invest. Dermatol.135(1), 160–169. https://doi.org/10.1038/jid.2014.353 (2015).
doi: 10.1038/jid.2014.353 pubmed: 25111616
Ray, R. et al. Uteroglobin suppresses SCCA gene expression associated with allergic asthma. J. Biol. Chem.280(11), 9761–9764. https://doi.org/10.1074/jbc.C400581200 (2005).
doi: 10.1074/jbc.C400581200 pubmed: 15677460
Johnson, P. R. A. et al. Connective tissue growth factor induces extracellular matrix in asthmatic airway smooth muscle. Am. J. Respir. Crit. Care Med.173(1), 32–41. https://doi.org/10.1164/rccm.200406-703OC (2006).
doi: 10.1164/rccm.200406-703OC pubmed: 16179645
Wang, A. et al. Cutting edge: Smad2 and Smad4 regulate TGF-β–mediated Il9 gene expression via EZH2 displacement. J. Immunol.191(10), 4908–4912. https://doi.org/10.4049/jimmunol.1300433 (2013).
doi: 10.4049/jimmunol.1300433 pubmed: 24108699
Tidin, O., Friman, E. T., Naef, F. & Suter, D. M. Quantitative relationships between SMAD dynamics and target gene activation kinetics in single live cells. Sci. Rep.9(1), 5372. https://doi.org/10.1038/s41598-019-41870-2 (2019).
doi: 10.1038/s41598-019-41870-2 pubmed: 30926874 pmcid: 6440972
Wortley, M. A. & Bonvini, S. J. Transforming growth factor-β1: a novel cause of resistance to bronchodilators in Asthma?. Am. J. Respir. Cell Mol. Biol.61(2), 134–135. https://doi.org/10.1165/rcmb.2019-0020ED (2019).
doi: 10.1165/rcmb.2019-0020ED pubmed: 30768914 pmcid: 6670036
Kim, Y. H. & Lee, S.-H. TGF-β/SMAD4 mediated UCP2 downregulation contributes to Aspergillus protease-induced inflammation in primary bronchial epithelial cells. Redox Biol.18, 104–113. https://doi.org/10.1016/j.redox.2018.06.011 (2018).
doi: 10.1016/j.redox.2018.06.011 pubmed: 30007886 pmcid: 6067066
Solberg, O. D. et al. Airway epithelial miRNA expression is altered in asthma. Am. J. Respir. Crit. Care Med.186(10), 965–974. https://doi.org/10.1164/rccm.201201-0027OC (2012).
doi: 10.1164/rccm.201201-0027OC pubmed: 22955319 pmcid: 3530212
Marcet, B. et al. Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway. Nat. Cell Biol.13(6), 693–699. https://doi.org/10.1038/ncb2241 (2011).
doi: 10.1038/ncb2241 pubmed: 21602795
Yin, H. et al. MicroRNA-34/449 targets IGFBP-3 and attenuates airway remodeling by suppressing Nur77-mediated autophagy. Cell Death Dis.8(8), e2998. https://doi.org/10.1038/cddis.2017.357 (2017).
doi: 10.1038/cddis.2017.357 pubmed: 28796252 pmcid: 5596548
Clough, E. & Barrett, T. The Gene Expression Omnibus Database. Methods Mol. Biol. Clifton NJ1418, 93–110. https://doi.org/10.1007/978-1-4939-3578-9_5 (2016).
doi: 10.1007/978-1-4939-3578-9_5
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & for the PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ339, b2535–b2535. https://doi.org/10.1136/bmj.b2535 (2009).
doi: 10.1136/bmj.b2535 pubmed: 19622551 pmcid: 2714657
Davis, S. & Meltzer, P. S. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinforma. Oxf. Engl.23(14), 1846–1847. https://doi.org/10.1093/bioinformatics/btm254 (2007).
doi: 10.1093/bioinformatics/btm254
Irizarry, R. A. et al. Summaries of Affymetrix GeneChip probe level data. Nucl. Acids Res.31(4), e15. https://doi.org/10.1093/nar/gng015 (2003).
doi: 10.1093/nar/gng015 pubmed: 12582260
Gray, K. A., Seal, R. L., Tweedie, S., Wright, M. W. & Bruford, E. A. A review of the new HGNC gene family resource. Hum. Genomics10, 6. https://doi.org/10.1186/s40246-016-0062-6 (2016).
doi: 10.1186/s40246-016-0062-6 pubmed: 26842383 pmcid: 4739092
Ahmad, S. et al. Transcriptome meta-analysis deciphers a dysregulation in immune response-associated gene signatures during sepsis. Genes10(12), 1005. https://doi.org/10.3390/genes10121005 (2019).
doi: 10.3390/genes10121005 pmcid: 6947644
Shriwash, N. et al. Identification of differentially expressed genes in small and non-small cell lung cancer based on meta-analysis of mRNA. Heliyon5(6), e01707. https://doi.org/10.1016/j.heliyon.2019.e01707 (2019).
doi: 10.1016/j.heliyon.2019.e01707 pubmed: 31338439 pmcid: 6580189
Marot, G., Foulley, J.-L., Mayer, C.-D. & Jaffrézic, F. Moderated effect size and P-value combinations for microarray meta-analyses. Bioinforma. Oxf. Engl.25(20), 2692–2699. https://doi.org/10.1093/bioinformatics/btp444 (2009).
doi: 10.1093/bioinformatics/btp444
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucl. Acids Res.43(7), e47–e47. https://doi.org/10.1093/nar/gkv007 (2015).
doi: 10.1093/nar/gkv007 pubmed: 25605792
Fisher, R. A. Statistical Methods for Research Workers. In Breakthroughs in Statistics (eds Kotz, S. & Johnson, N. L.) 66–70 (Springer, New York, NY, 1992).
doi: 10.1007/978-1-4612-4380-9_6
Benjamini, Y. Discovering the false discovery rate: False Discovery Rate. J. R. Stat. Soc. Ser. B Stat. Methodol.72(4), 405–416. https://doi.org/10.1111/j.1467-9868.2010.00746.x (2010).
doi: 10.1111/j.1467-9868.2010.00746.x
Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform.14, 128. https://doi.org/10.1186/1471-2105-14-128 (2013).
doi: 10.1186/1471-2105-14-128
Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucl. Acids Res.44(W1), W90-97. https://doi.org/10.1093/nar/gkw377 (2016).
doi: 10.1093/nar/gkw377 pubmed: 27141961
Oughtred, R. et al. The BioGRID interaction database: 2019 update. Nucl. Acids Res.47(D1), D529–D541. https://doi.org/10.1093/nar/gky1079 (2019).
doi: 10.1093/nar/gky1079 pubmed: 30476227
Alanis-Lobato, G., Andrade-Navarro, M. A. & Schaefer, M. H. HIPPIE v2.0: enhancing meaningfulness and reliability of protein–protein interaction networks. Nucl. Acids Res.45(D1), D408–D414. https://doi.org/10.1093/nar/gkw985 (2017).
doi: 10.1093/nar/gkw985 pubmed: 27794551
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res.13(11), 2498–2504. https://doi.org/10.1101/gr.1239303 (2003).
doi: 10.1101/gr.1239303 pubmed: 14597658 pmcid: 403769
Sriroopreddy, R., Sajeed, R., Raghuraman, P., Sudandiradoss, C. Differentially expressed gene (DEG) based protein-protein interaction (PPI) network identifies a spectrum of gene interactome, transcriptome and correlated miRNA in nondisjunction Down syndrome. Int. J. Biol. Macromol.122, 1080–1089. https://doi.org/10.1016/j.ijbiomac.2018.09.056 (2019).
doi: 10.1016/j.ijbiomac.2018.09.056 pubmed: 30218739
Sticht, C., De La Torre, C., Parveen, A. & Gretz, N. miRWalk: An online resource for prediction of microRNA binding sites. PLoS ONE13(10), e0206239. https://doi.org/10.1371/journal.pone.0206239 (2018).
doi: 10.1371/journal.pone.0206239 pubmed: 30335862 pmcid: 6193719
Açıcı, K., Terzi, Y. K. & Oğul, H. Retrieving relevant experiments: The case of microRNA microarrays. Biosystems134, 71–78. https://doi.org/10.1016/j.biosystems.2015.06.003 (2015).
doi: 10.1016/j.biosystems.2015.06.003 pubmed: 26116091
Li, J.-H., Liu, S., Zhou, H., Qu, L.-H. & Yang, J.-H. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucl. Acids Res.42(D1), D92–D97. https://doi.org/10.1093/nar/gkt1248 (2014).
doi: 10.1093/nar/gkt1248 pubmed: 24297251
Zhou, K.-R. et al. ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data. Nucl. Acids Res.45(D1), D43–D50. https://doi.org/10.1093/nar/gkw965 (2017).
doi: 10.1093/nar/gkw965 pubmed: 27924033
Zheng, G. et al. ITFP: an integrated platform of mammalian transcription factors. Bioinforma. Oxf. Engl.24(20), 2416–2417. https://doi.org/10.1093/bioinformatics/btn439 (2008).
doi: 10.1093/bioinformatics/btn439
Sun, J., Gong, X., Purow, B. & Zhao, Z. Uncovering microRNA and transcription factor mediated regulatory networks in glioblastoma. PLoS Comput. Biol.8(7), e1002488. https://doi.org/10.1371/journal.pcbi.1002488 (2012).
doi: 10.1371/journal.pcbi.1002488 pubmed: 22829753 pmcid: 3400583

Auteurs

Prithvi Singh (P)

Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.

Archana Sharma (A)

Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India.

Rishabh Jha (R)

Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.

Shweta Arora (S)

Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India.

Rafiq Ahmad (R)

Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi, 110025, India.

Arshad Husain Rahmani (AH)

Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia.

Saleh A Almatroodi (SA)

Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia.

Ravins Dohare (R)

Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India. ravinsdohare@gmail.com.

Mansoor Ali Syed (MA)

Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India. smansoor@jmi.ac.in.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH