Role of the parasympathetic nervous system in cancer initiation and progression.
Animals
Cholinergic Neurons
/ physiology
Disease Progression
Dogs
Heart Rate
/ physiology
Humans
Male
Mice
Neoplasms
/ etiology
Parasympathetic Nervous System
/ physiology
Prostatic Neoplasms
/ etiology
Rats
Retrospective Studies
Sympathetic Nervous System
/ physiology
Vagotomy
/ adverse effects
Vagus Nerve
/ physiology
Acetylcholine
Cancer
Heart rate variability
Vagal nerve stimulation
Vagotomy
Vagus nerve
Journal
Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico
ISSN: 1699-3055
Titre abrégé: Clin Transl Oncol
Pays: Italy
ID NLM: 101247119
Informations de publication
Date de publication:
Apr 2021
Apr 2021
Historique:
received:
09
06
2020
accepted:
21
07
2020
pubmed:
10
8
2020
medline:
18
9
2021
entrez:
10
8
2020
Statut:
ppublish
Résumé
The nervous system plays an important role in cancer initiation and progression. Accumulated evidences clearly show that the sympathetic nervous system exerts stimulatory effects on carcinogenesis and cancer growth. However, the role of the parasympathetic nervous system in cancer has been much less elucidated. Whereas retrospective studies in vagotomized patients and experiments employing vagotomized animals indicate the parasympathetic nervous system has an inhibitory effect on cancer, clinical studies in patients with prostate cancer indicate it has stimulatory effects. Therefore, the aim of this paper is a critical evaluation of the available data related to the role of the parasympathetic nervous system in cancer.
Identifiants
pubmed: 32770391
doi: 10.1007/s12094-020-02465-w
pii: 10.1007/s12094-020-02465-w
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
669-681Subventions
Organisme : Agentúra na Podporu Výskumu a Vývoja
ID : APVV-17-0090
Organisme : Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
ID : 2/0028/16
Commentaires et corrections
Type : CommentIn
Références
Faulkner S, Jobling P, March B, Jiang CC, Hondermarck H. Tumor neurobiology and the war of nerves in cancer. Cancer Discov. 2019. https://doi.org/10.1158/2159-8290.CD-18-1398 .
doi: 10.1158/2159-8290.CD-18-1398
pubmed: 30944117
Mravec B, Gidron Y, Kukanova B, Bizik J, Kiss A, Hulin I. Neural-endocrine-immune complex in the central modulation of tumorigenesis: facts, assumptions, and hypotheses. J Neuroimmunol. 2006;180(1–2):104–16. https://doi.org/10.1016/j.jneuroim.2006.07.003 .
doi: 10.1016/j.jneuroim.2006.07.003
pubmed: 16945428
Ondicova K, Mravec B. Role of nervous system in cancer aetiopathogenesis. Lancet Oncol. 2010;11(6):596–601. https://doi.org/10.1016/S1470-2045(09)70337-7 .
doi: 10.1016/S1470-2045(09)70337-7
pubmed: 20522385
Flint MS, Baum A, Chambers WH, Jenkins FJ. Induction of DNA damage, alteration of DNA repair and transcriptional activation by stress hormones. Psychoneuroendocrinology. 2007;32(5):470–9. https://doi.org/10.1016/j.psyneuen.2007.02.013 .
doi: 10.1016/j.psyneuen.2007.02.013
pubmed: 17459596
Wrobel LJ, Le Gal FA. Inhibition of human melanoma growth by a non-cardioselective beta-blocker. J Invest Dermatol. 2015;135(2):525–31. https://doi.org/10.1038/jid.2014.373 .
doi: 10.1038/jid.2014.373
pubmed: 25178102
Armaiz-Pena GN, Allen JK, Cruz A, Stone RL, Nick AM, Lin YG, et al. Src activation by beta-adrenoreceptors is a key switch for tumour metastasis. Nat Commun. 2013;4:1403. https://doi.org/10.1038/ncomms2413 .
doi: 10.1038/ncomms2413
pubmed: 23360994
pmcid: 3561638
Shi M, Liu D, Duan H, Qian L, Wang L, Niu L, et al. The beta2-adrenergic receptor and Her2 comprise a positive feedback loop in human breast cancer cells. Breast Cancer Res Treat. 2011;125(2):351–62. https://doi.org/10.1007/s10549-010-0822-2 .
doi: 10.1007/s10549-010-0822-2
pubmed: 20237834
Huan HB, Wen XD, Chen XJ, Wu L, Wu LL, Zhang L, et al. Sympathetic nervous system promotes hepatocarcinogenesis by modulating inflammation through activation of alpha1-adrenergic receptors of Kupffer cells. Brain Behav Immun. 2017;59:118–34. https://doi.org/10.1016/j.bbi.2016.08.016 .
doi: 10.1016/j.bbi.2016.08.016
pubmed: 27585737
Ben-Eliyahu S, Shakhar G, Page GG, Stefanski V, Shakhar K. Suppression of NK cell activity and of resistance to metastasis by stress: a role for adrenal catecholamines and beta-adrenoceptors. NeuroImmunoModulation. 2000;8(3):154–64. https://doi.org/10.1159/000054276 .
doi: 10.1159/000054276
pubmed: 11124582
Schuller HM, Cole B. Regulation of cell proliferation by beta-adrenergic receptors in a human lung adenocarcinoma cell line. Carcinogenesis. 1989;10(9):1753–5.
doi: 10.1093/carcin/10.9.1753
Huang XY, Wang HC, Yuan Z, Huang J, Zheng Q. Norepinephrine stimulates pancreatic cancer cell proliferation, migration and invasion via beta-adrenergic receptor-dependent activation of P38/MAPK pathway. Hepatogastroenterology. 2012;59(115):889–93. https://doi.org/10.5754/hge11476 .
doi: 10.5754/hge11476
pubmed: 22020907
Lackovicova L, Banovska L, Bundzikova J, Janega P, Bizik J, Kiss A, et al. Chemical sympathectomy suppresses fibrosarcoma development and improves survival of tumor-bearing rats. Neoplasma. 2011;58(5):424–9.
doi: 10.4149/neo_2011_05_424
Horvathova L, Padova A, Tillinger A, Osacka J, Bizik J, Mravec B. Sympathectomy reduces tumor weight and affects expression of tumor-related genes in melanoma tissue in the mouse. Stress. 2016;19:528–34.
doi: 10.1080/10253890.2016.1213808
Zhi X, Li B, Li Z, Zhang J, Yu J, Zhang L, et al. Adrenergic modulation of AMPKdependent autophagy by chronic stress enhances cell proliferation and survival in gastric cancer. Int J Oncol. 2019;54(5):1625–38. https://doi.org/10.3892/ijo.2019.4753 .
doi: 10.3892/ijo.2019.4753
pubmed: 30896863
pmcid: 6438426
Yang EV, Kim SJ, Donovan EL, Chen M, Gross AC, Webster Marketon JI, et al. Norepinephrine upregulates VEGF, IL-8, and IL-6 expression in human melanoma tumor cell lines: implications for stress-related enhancement of tumor progression. Brain Behav Immun. 2009;23(2):267–75. https://doi.org/10.1016/j.bbi.2008.10.005 .
doi: 10.1016/j.bbi.2008.10.005
pubmed: 18996182
Park SY, Kang JH, Jeong KJ, Lee J, Han JW, Choi WS, et al. Norepinephrine induces VEGF expression and angiogenesis by a hypoxia-inducible factor-1alpha protein-dependent mechanism. Int J Cancer. 2011;128(10):2306–16. https://doi.org/10.1002/ijc.25589 .
doi: 10.1002/ijc.25589
pubmed: 20715173
Le CP, Nowell CJ, Kim-Fuchs C, Botteri E, Hiller JG, Ismail H, et al. Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination. Nat Commun. 2016;7:10634. https://doi.org/10.1038/ncomms10634 .
doi: 10.1038/ncomms10634
pubmed: 26925549
pmcid: 4773495
Yang EV, Sood AK, Chen M, Li Y, Eubank TD, Marsh CB, et al. Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res. 2006;66(21):10357–64. https://doi.org/10.1158/0008-5472.CAN-06-2496 .
doi: 10.1158/0008-5472.CAN-06-2496
pubmed: 17079456
Sood AK, Bhatty R, Kamat AA, Landen CN, Han L, Thaker PH, et al. Stress hormone-mediated invasion of ovarian cancer cells. Clin Cancer Res. 2006;12(2):369–75. https://doi.org/10.1158/1078-0432.CCR-05-1698 .
doi: 10.1158/1078-0432.CCR-05-1698
pubmed: 16428474
pmcid: 3141061
Cole SW, Nagaraja AS, Lutgendorf SK, Green PA, Sood AK. Sympathetic nervous system regulation of the tumour microenvironment. Nat Rev Cancer. 2015;15(9):563–72. https://doi.org/10.1038/nrc3978 .
doi: 10.1038/nrc3978
pubmed: 26299593
pmcid: 4828959
Sloan EK, Priceman SJ, Cox BF, Yu S, Pimentel MA, Tangkanangnukul V, et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res. 2010;70(18):7042–52. https://doi.org/10.1158/0008-5472.CAN-10-0522 .
doi: 10.1158/0008-5472.CAN-10-0522
pubmed: 20823155
pmcid: 2940980
Palm D, Lang K, Niggemann B, Drell TL, Masur K, Zaenker KS, et al. The norepinephrine-driven metastasis development of PC-3 human prostate cancer cells in BALB/c nude mice is inhibited by beta-blockers. Int J Cancer. 2006;118(11):2744–9. https://doi.org/10.1002/ijc.21723 .
doi: 10.1002/ijc.21723
pubmed: 16381019
De Giorgi V, Grazzini M, Benemei S, Marchionni N, Botteri E, Pennacchioli E, et al. Propranolol for off-label treatment of patients with melanoma: results from a cohort study. JAMA Oncol. 2018;4(2):e172908. https://doi.org/10.1001/jamaoncol.2017.2908 .
doi: 10.1001/jamaoncol.2017.2908
pubmed: 28973254
Caygill CP, Knowles RL, Hall R. Increased risk of cancer mortality after vagotomy for peptic ulcer: a preliminary analysis. Eur J Cancer Prev. 1991;1(1):35–7.
doi: 10.1097/00008469-199110000-00007
Caygill CP, Hill MJ, Kirkham JS, Northfield TC. Mortality from colorectal and breast cancer in gastric-surgery patients. Int J Colorectal Dis. 1988;3(3):144–8.
doi: 10.1007/BF01648356
Ekbom A, Lundegardh G, McLaughlin JK, Nyren O. Relation of vagotomy to subsequent risk of lung cancer: population based cohort study. BMJ. 1998;316(7130):518–9. https://doi.org/10.1136/bmj.316.7130.518 .
doi: 10.1136/bmj.316.7130.518
pubmed: 9501714
pmcid: 2665666
Watt PC, Patterson CC, Kennedy TL. Late mortality after vagotomy and drainage for duodenal ulcer. Br Med J (Clin Res Ed). 1984;288(6427):1335–8.
doi: 10.1136/bmj.288.6427.1335
Rabben HL, Zhao CM, Hayakawa Y, Wang TC, Chen D. Vagotomy and gastric tumorigenesis. Curr Neuropharmacol. 2016;14(8):967–72.
doi: 10.2174/1570159X14666160121114854
Nelson RL, Briley S, Vaz OP, Abcarian H. The effect of vagotomy and pyloroplasty on colorectal tumor induction in the rat. J Surg Oncol. 1992;51(4):281–6.
doi: 10.1002/jso.2930510416
Erin N, Boyer PJ, Bonneau RH, Clawson GA, Welch DR. Capsaicin-mediated denervation of sensory neurons promotes mammary tumor metastasis to lung and heart. Anticancer Res. 2004;24(2b):1003–9.
pubmed: 15161056
Erin N, Zhao W, Bylander J, Chase G, Clawson G. Capsaicin-induced inactivation of sensory neurons promotes a more aggressive gene expression phenotype in breast cancer cells. Breast Cancer Res Treat. 2006;99(3):351–64. https://doi.org/10.1007/s10549-006-9219-7 .
doi: 10.1007/s10549-006-9219-7
pubmed: 16583263
Erin N, Akdas Barkan G, Harms JF, Clawson GA. Vagotomy enhances experimental metastases of 4THMpc breast cancer cells and alters substance P level. Regul Pept. 2008;151(1–3):35–42. https://doi.org/10.1016/j.regpep.2008.03.012 .
doi: 10.1016/j.regpep.2008.03.012
pubmed: 18499282
Partecke LI, Kading A, Trung DN, Diedrich S, Sendler M, Weiss F, et al. Subdiaphragmatic vagotomy promotes tumor growth and reduces survival via TNFalpha in a murine pancreatic cancer model. Oncotarget. 2017;8(14):22501–12. https://doi.org/10.18632/oncotarget.15019 .
doi: 10.18632/oncotarget.15019
pubmed: 28160574
pmcid: 5410240
Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 2003;4(6):437–50.
doi: 10.1016/S1535-6108(03)00309-X
Guerra C, Schuhmacher AJ, Canamero M, Grippo PJ, Verdaguer L, Perez-Gallego L, et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell. 2007;11(3):291–302. https://doi.org/10.1016/j.ccr.2007.01.012 .
doi: 10.1016/j.ccr.2007.01.012
pubmed: 17349585
Renz BW, Tanaka T, Sunagawa M, Takahashi R, Jiang Z, Macchini M, et al. Cholinergic signaling via muscarinic receptors directly and indirectly suppresses pancreatic tumorigenesis and cancer stemness. Cancer Discov. 2018;8(11):1458–73. https://doi.org/10.1158/2159-8290.CD-18-0046 .
doi: 10.1158/2159-8290.CD-18-0046
pubmed: 30185628
pmcid: 6214763
Al-Wadei MH, Al-Wadei HA, Schuller HM. Pancreatic cancer cells and normal pancreatic duct epithelial cells express an autocrine catecholamine loop that is activated by nicotinic acetylcholine receptors alpha3, alpha5, and alpha7. Mol Cancer Res. 2012;10(2):239–49. https://doi.org/10.1158/1541-7786.MCR-11-0332 .
doi: 10.1158/1541-7786.MCR-11-0332
pubmed: 22188668
Benthem L, Mundinger TO, Taborsky GJ Jr. Parasympathetic inhibition of sympathetic neural activity to the pancreas. Am J Physiol Endocrinol Metab. 2001;280(2):E378–E381381. https://doi.org/10.1152/ajpendo.2001.280.2.E378 .
doi: 10.1152/ajpendo.2001.280.2.E378
pubmed: 11158944
Benthem L, Mundinger TO, Taborsky GJ Jr. Meal-induced insulin secretion in dogs is mediated by both branches of the autonomic nervous system. Am J Physiol Endocrinol Metab. 2000;278(4):E603–E610610. https://doi.org/10.1152/ajpendo.2000.278.4.E603 .
doi: 10.1152/ajpendo.2000.278.4.E603
pubmed: 10751192
Khasar GS, Green GP, Miao FJP, Levine JD. Vagal modulation of nociception is mediated by adrenomedullary epinephrine in the rat. Eur J Neurosci. 2003;17(4):909–15. https://doi.org/10.1046/j.1460-9568.2003.02503.x .
doi: 10.1046/j.1460-9568.2003.02503.x
pubmed: 12603283
Renz BW, Takahashi R, Tanaka T, Macchini M, Hayakawa Y, Dantes Z, et al. Beta2 adrenergic-neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell. 2018;33(1):75–90 e7. https://doi.org/10.1016/j.ccell.2017.11.007 .
doi: 10.1016/j.ccell.2017.11.007
pubmed: 29249692
Kamiya A, Hayama Y, Kato S, Shimomura A, Shimomura T, Irie K, et al. Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression. Nat Neurosci. 2019;22(8):1289–305. https://doi.org/10.1038/s41593-019-0430-3 .
doi: 10.1038/s41593-019-0430-3
pubmed: 31285612
Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ, et al. Autonomic nerve development contributes to prostate cancer progression. Science. 2013;341(6142):1236361. https://doi.org/10.1126/science.1236361 .
doi: 10.1126/science.1236361
pubmed: 23846904
Coarfa C, Florentin D, Putluri N, Ding Y, Au J, He D, et al. Influence of the neural microenvironment on prostate cancer. Prostate. 2018;78(2):128–39. https://doi.org/10.1002/pros.23454 .
doi: 10.1002/pros.23454
pubmed: 29131367
Neeman E, Zmora O, Ben-Eliyahu S. A new approach to reducing postsurgical cancer recurrence: perioperative targeting of catecholamines and prostaglandins. Clin Cancer Res. 2012;18(18):4895–902. https://doi.org/10.1158/1078-0432.CCR-12-1087 .
doi: 10.1158/1078-0432.CCR-12-1087
pubmed: 22753587
pmcid: 3445778
Silva J, Pinto R, Carvalho T, Botelho F, Silva P, Oliveira R, et al. Intraprostatic botulinum toxin Type A injection in patients with benign prostatic enlargement: duration of the effect of a single treatment. BMC Urol. 2009;9:9. https://doi.org/10.1186/1471-2490-9-9 .
doi: 10.1186/1471-2490-9-9
pubmed: 19682392
pmcid: 2734751
March B, Faulkner S, Jobling P, Steigler A, Blatt A, Denham J, et al. Tumour innervation and neurosignalling in prostate cancer. Nat Rev Urol. 2020;17(2):119–30. https://doi.org/10.1038/s41585-019-0274-3 .
doi: 10.1038/s41585-019-0274-3
pubmed: 31937919
Zhao CM, Hayakawa Y, Kodama Y, Muthupalani S, Westphalen CB, Andersen GT, et al. Denervation suppresses gastric tumorigenesis. Sci Transl Med. 2014;6(250):250ra115. https://doi.org/10.1126/scitranslmed.3009569 .
doi: 10.1126/scitranslmed.3009569
pubmed: 25143365
pmcid: 4374618
Hayakawa Y, Sakitani K, Konishi M, Asfaha S, Niikura R, Tomita H, et al. Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell. 2017;31(1):21–34. https://doi.org/10.1016/j.ccell.2016.11.005 .
doi: 10.1016/j.ccell.2016.11.005
pubmed: 27989802
Zhang L, Guo L, Tao M, Fu W, Xiu D. Parasympathetic neurogenesis is strongly associated with tumor budding and correlates with an adverse prognosis in pancreatic ductal adenocarcinoma. Chin J Cancer Res. 2016;28(2):180–6. https://doi.org/10.21147/j.issn.1000-9604.2016.02.05 .
doi: 10.21147/j.issn.1000-9604.2016.02.05
pubmed: 27199515
pmcid: 4865610
Zhang L, Wu LL, Huan HB, Chen XJ, Wen XD, Yang DP, et al. Sympathetic and parasympathetic innervation in hepatocellular carcinoma. Neoplasma. 2017;64(6):840–6. https://doi.org/10.4149/neo_2017_605 .
doi: 10.4149/neo_2017_605
pubmed: 28895408
Jänig W. The integrative action of the autonomic nervous system. Neurobiology of homeostasis. Cambridge: Cambridge University Press; 2006.
doi: 10.1017/CBO9780511541667
Mravec B, Ondicova K, Tillinger A, Pecenak J. Subdiaphragmatic vagotomy enhances stress-induced epinephrine release in rats. Auton Neurosci. 2015;190:20–5. https://doi.org/10.1016/j.autneu.2015.04.003 .
doi: 10.1016/j.autneu.2015.04.003
pubmed: 25940783
Cole SW, Sood AK. Molecular pathways: beta-adrenergic signaling in cancer. Clin Cancer Res. 2012;18(5):1201–6. https://doi.org/10.1158/1078-0432.CCR-11-0641 .
doi: 10.1158/1078-0432.CCR-11-0641
pubmed: 22186256
Hara MR, Kovacs JJ, Whalen EJ, Rajagopal S, Strachan RT, Grant W, et al. A stress response pathway regulates DNA damage through beta2-adrenoreceptors and beta-arrestin-1. Nature. 2011;477(7364):349–53. https://doi.org/10.1038/nature10368 .
doi: 10.1038/nature10368
pubmed: 21857681
pmcid: 3628753
Qiao G, Chen M, Bucsek MJ, Repasky EA, Hylander BL. Adrenergic signaling: a targetable checkpoint limiting development of the antitumor immune response. Front Immunol. 2018;9:164. https://doi.org/10.3389/fimmu.2018.00164 .
doi: 10.3389/fimmu.2018.00164
pubmed: 29479349
pmcid: 5812031
Coelho M, Soares-Silva C, Brandao D, Marino F, Cosentino M, Ribeiro L. beta-Adrenergic modulation of cancer cell proliferation: available evidence and clinical perspectives. J Cancer Res Clin Oncol. 2017;143(2):275–91. https://doi.org/10.1007/s00432-016-2278-1 .
doi: 10.1007/s00432-016-2278-1
pubmed: 27709364
Sastry KS, Karpova Y, Prokopovich S, Smith AJ, Essau B, Gersappe A, et al. Epinephrine protects cancer cells from apoptosis via activation of cAMP-dependent protein kinase and BAD phosphorylation. J Biol Chem. 2007;282(19):14094–100. https://doi.org/10.1074/jbc.M611370200 .
doi: 10.1074/jbc.M611370200
pubmed: 17353197
Garg J, Feng YX, Jansen SR, Friedrich J, Lezoualc'h F, Schmidt M, et al. Catecholamines facilitate VEGF-dependent angiogenesis via beta2-adrenoceptor-induced Epac1 and PKA activation. Oncotarget. 2017;8(27):44732–48. https://doi.org/10.18632/oncotarget.17267 .
doi: 10.18632/oncotarget.17267
pubmed: 28512254
pmcid: 5546514
Rajendra Acharya U, Paul Joseph K, Kannathal N, Lim CM, Suri JS. Heart rate variability: a review. Med Biol Eng Comput. 2006;44(12):1031–51. https://doi.org/10.1007/s11517-006-0119-0 .
doi: 10.1007/s11517-006-0119-0
pubmed: 17111118
Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Health. 2017;5:258. https://doi.org/10.3389/fpubh.2017.00258 .
doi: 10.3389/fpubh.2017.00258
pubmed: 29034226
pmcid: 5624990
Ernst G. Heart-rate variability-more than heart beats? Front Public Health. 2017;5:240. https://doi.org/10.3389/fpubh.2017.00240 .
doi: 10.3389/fpubh.2017.00240
pubmed: 28955705
pmcid: 5600971
Goldberger AL. Fractal variability versus pathologic periodicity: complexity loss and stereotypy in disease. Perspect Biol Med. 1997;40(4):543–61. https://doi.org/10.1353/pbm.1997.0063 .
doi: 10.1353/pbm.1997.0063
pubmed: 9269744
Zhou X, Ma Z, Zhang L, Zhou S, Wang J, Wang B, et al. Heart rate variability in the prediction of survival in patients with cancer: a systematic review and meta-analysis. J Psychosom Res. 2016;89:20–5. https://doi.org/10.1016/j.jpsychores.2016.08.004 .
doi: 10.1016/j.jpsychores.2016.08.004
pubmed: 27663106
Kloter E, Barrueto K, Klein SD, Scholkmann F, Wolf U. Heart rate variability as a prognostic factor for cancer survival—a systematic review. Front Physiol. 2018;9:623. https://doi.org/10.3389/fphys.2018.00623 .
doi: 10.3389/fphys.2018.00623
pubmed: 29896113
pmcid: 5986915
Reijmen E, Vannucci L, De Couck M, De Greve J, Gidron Y. Therapeutic potential of the vagus nerve in cancer. Immunol Lett. 2018;202:38–433. https://doi.org/10.1016/j.imlet.2018.07.006 .
doi: 10.1016/j.imlet.2018.07.006
pubmed: 30077536
De Couck M, Caers R, Spiegel D, Gidron Y. The role of the vagus nerve in cancer prognosis: a systematic and a comprehensive review. J Oncol. 2018;2018:1236787. https://doi.org/10.1155/2018/1236787 .
doi: 10.1155/2018/1236787
pubmed: 30057605
pmcid: 6051067
Ma Y, Ren Y, Dai ZJ, Wu CJ, Ji YH, Xu J. IL-6, IL-8 and TNF-alpha levels correlate with disease stage in breast cancer patients. Adv Clin Exp Med. 2017;26(3):421–6. https://doi.org/10.17219/acem/62120 .
doi: 10.17219/acem/62120
pubmed: 28791816
Michalaki V, Syrigos K, Charles P, Waxman J. Serum levels of IL-6 and TNF-alpha correlate with clinicopathological features and patient survival in patients with prostate cancer. Br J Cancer. 2004;90(12):2312–6. https://doi.org/10.1038/sj.bjc.6601814 .
doi: 10.1038/sj.bjc.6601814
pubmed: 15150588
pmcid: 2409519
Lippitz BE, Harris RA. Cytokine patterns in cancer patients: a review of the correlation between interleukin 6 and prognosis. Oncoimmunology. 2016;5(5):e1093722. https://doi.org/10.1080/2162402X.2015.1093722 .
doi: 10.1080/2162402X.2015.1093722
pubmed: 27467926
pmcid: 4910721
Nakashima J, Tachibana M, Horiguchi Y, Oya M, Ohigashi T, Asakura H, et al. Serum interleukin 6 as a prognostic factor in patients with prostate cancer. Clin Cancer Res. 2000;6(7):2702–6.
pubmed: 10914713
Haensel A, Mills PJ, Nelesen RA, Ziegler MG, Dimsdale JE. The relationship between heart rate variability and inflammatory markers in cardiovascular diseases. Psychoneuroendocrinology. 2008;33(10):1305–12. https://doi.org/10.1016/j.psyneuen.2008.08.007 .
doi: 10.1016/j.psyneuen.2008.08.007
pubmed: 18819754
pmcid: 4266571
Marsland AL, Gianaros PJ, Prather AA, Jennings JR, Neumann SA, Manuck SB. Stimulated production of proinflammatory cytokines covaries inversely with heart rate variability. Psychosom Med. 2007;69(8):709–16. https://doi.org/10.1097/PSY.0b013e3181576118 .
doi: 10.1097/PSY.0b013e3181576118
pubmed: 17942840
Mani AR, Montagnese S, Jackson CD, Jenkins CW, Head IM, Stephens RC, et al. Decreased heart rate variability in patients with cirrhosis relates to the presence and degree of hepatic encephalopathy. Am J Physiol Gastrointest Liver Physiol. 2009;296(2):G330–G33838. https://doi.org/10.1152/ajpgi.90488.2008 .
doi: 10.1152/ajpgi.90488.2008
pubmed: 19023029
Hajiasgharzadeh K, Mirnajafi-Zadeh J, Mani AR. Interleukin-6 impairs chronotropic responsiveness to cholinergic stimulation and decreases heart rate variability in mice. Eur J Pharmacol. 2011;673(1–3):70–7. https://doi.org/10.1016/j.ejphar.2011.10.013 .
doi: 10.1016/j.ejphar.2011.10.013
pubmed: 22044916
Hewitt M, Rowland JH, Yancik R. Cancer survivors in the United States: age, health, and disability. J Gerontol Ser A Biol Sci Med Sci. 2003;58(1):82–91. https://doi.org/10.1093/gerona/58.1.m82 .
doi: 10.1093/gerona/58.1.m82
Thornton LM, Andersen BL, Blakely WP. The pain, depression, and fatigue symptom cluster in advanced breast cancer: covariation with the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. Health Psychol. 2010;29(3):333–7. https://doi.org/10.1037/a0018836 .
doi: 10.1037/a0018836
pubmed: 20496988
pmcid: 2910549
Schaur RJ, Semmelrock HJ, Schauenstein E, Kronberger L. Tumor host relations. II. Influence of tumor extent and tumor site on plasma cortisol of patients with malignant diseases. J Cancer Res Clin Oncol. 1979;93(3):287–92. https://doi.org/10.1007/bf00964585 .
doi: 10.1007/bf00964585
pubmed: 468890
Drott C, Svaninger G, Lundholm K. Increased urinary excretion of cortisol and catecholamines in malnourished cancer patients. Ann Surg. 1988;208(5):645–50. https://doi.org/10.1097/00000658-198811000-00017 .
doi: 10.1097/00000658-198811000-00017
pubmed: 3190291
pmcid: 1493794
Kim HG, Cheon EJ, Bai DS, Lee YH, Koo BH. Stress and heart rate variability: a meta-analysis and review of the literature. Psychiatry Investig. 2018;15(3):235–45. https://doi.org/10.30773/pi.2017.08.17 .
doi: 10.30773/pi.2017.08.17
pubmed: 29486547
pmcid: 5900369
Jarczok MN, Kleber ME, Koenig J, Loerbroks A, Herr RM, Hoffmann K, et al. Investigating the associations of self-rated health: heart rate variability is more strongly associated than inflammatory and other frequently used biomarkers in a cross sectional occupational sample. PLoS ONE. 2015;10(2):e0117196. https://doi.org/10.1371/journal.pone.0117196 .
doi: 10.1371/journal.pone.0117196
pubmed: 25693164
pmcid: 4333766
Mikova L, Horvathova L, Ondicova K, Tillinger A, Vannucci LE, Bizik J, et al. Ambiguous effect of signals transmitted by the vagus nerve on fibrosarcoma incidence and survival of tumor-bearing rats. Neurosci Lett. 2015;593:90–4. https://doi.org/10.1016/j.neulet.2015.03.034 .
doi: 10.1016/j.neulet.2015.03.034
pubmed: 25797182
Dubeykovskaya Z, Si Y, Chen X, Worthley DL, Renz BW, Urbanska AM, et al. Neural innervation stimulates splenic TFF2 to arrest myeloid cell expansion and cancer. Nat Commun. 2016;7:10517. https://doi.org/10.1038/ncomms10517 .
doi: 10.1038/ncomms10517
pubmed: 26841680
pmcid: 4742920
Pavlov VA, Tracey KJ. Neural regulation of immunity: molecular mechanisms and clinical translation. Nat Neurosci. 2017;20(2):156–66. https://doi.org/10.1038/nn.4477 .
doi: 10.1038/nn.4477
pubmed: 28092663
Bassi GS, Dias DPM, Franchin M, Talbot J, Reis DG, Menezes GB, et al. Modulation of experimental arthritis by vagal sensory and central brain stimulation. Brain Behav Immun. 2017;64:330–43. https://doi.org/10.1016/j.bbi.2017.04.003 .
doi: 10.1016/j.bbi.2017.04.003
pubmed: 28392428
pmcid: 6330674
Oliveira T, Francisco AN, Demartini ZJ, Stebel SL. The role of vagus nerve stimulation in refractory epilepsy. Arq Neuropsiquiatr. 2017;75(9):657–66. https://doi.org/10.1590/0004-282X20170113 .
doi: 10.1590/0004-282X20170113
pubmed: 28977147
Gigliotti JC, Huang L, Ye H, Bajwa A, Chattrabhuti K, Lee S, et al. Ultrasound prevents renal ischemia-reperfusion injury by stimulating the splenic cholinergic anti-inflammatory pathway. J Am Soc Nephrol. 2013;24(9):1451–60. https://doi.org/10.1681/ASN.2013010084 .
doi: 10.1681/ASN.2013010084
pubmed: 23907510
pmcid: 3752954
Cotero V, Fan Y, Tsaava T, Kressel AM, Hancu I, Fitzgerald P, et al. Noninvasive sub-organ ultrasound stimulation for targeted neuromodulation. Nat Commun. 2019;10(1):952. https://doi.org/10.1038/s41467-019-08750-9 .
doi: 10.1038/s41467-019-08750-9
pubmed: 30862827
pmcid: 6414607
Zanos TP, Silverman HA, Levy T, Tsaava T, Battinelli E, Lorraine PW, et al. Identification of cytokine-specific sensory neural signals by decoding murine vagus nerve activity. Proc Natl Acad Sci USA. 2018;115(21):E4843–E48524852. https://doi.org/10.1073/pnas.1719083115 .
doi: 10.1073/pnas.1719083115
pubmed: 29735654
Steinberg BE, Silverman HA, Robbiati S, Gunasekaran MK, Tsaava T, Battinelli E, et al. Cytokine-specific neurograms in the sensory vagus nerve. Bioelectron Med. 2016;3:7–17.
doi: 10.15424/bioelectronmed.2016.00007
Berthoud HR, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system. Auton Neurosci. 2000;85(1–3):1–17. https://doi.org/10.1016/s1566-0702(00)00215-0 .
doi: 10.1016/s1566-0702(00)00215-0
pubmed: 11189015
Agarwal SK, Calaresu FR. Electrical stimulation of nucleus tractus solitarius excites vagal preganglionic cardiomotor neurons of the nucleus ambiguus in rats. Brain Res. 1992;574(1–2):320–4. https://doi.org/10.1016/0006-8993(92)90833-u .
doi: 10.1016/0006-8993(92)90833-u
pubmed: 1638403
Calleja-Macias IE, Kalantari M, Bernard HU. Cholinergic signaling through nicotinic acetylcholine receptors stimulates the proliferation of cervical cancer cells: an explanation for the molecular role of tobacco smoking in cervical carcinogenesis? Int J Cancer. 2009;124(5):1090–6. https://doi.org/10.1002/ijc.24053 .
doi: 10.1002/ijc.24053
pubmed: 19048619
Chen CS, Lee CH, Hsieh CD, Ho CT, Pan MH, Huang CS, et al. Nicotine-induced human breast cancer cell proliferation attenuated by garcinol through down-regulation of the nicotinic receptor and cyclin D3 proteins. Breast Cancer Res Treat. 2011;125(1):73–877. https://doi.org/10.1007/s10549-010-0821-3 .
doi: 10.1007/s10549-010-0821-3
pubmed: 20229177
Chen RJ, Ho YS, Guo HR, Wang YJ. Rapid activation of Stat3 and ERK1/2 by nicotine modulates cell proliferation in human bladder cancer cells. Toxicol Sci. 2008;104(2):283–93. https://doi.org/10.1093/toxsci/kfn086 .
doi: 10.1093/toxsci/kfn086
pubmed: 18448488
Jia Y, Sun H, Wu H, Zhang H, Zhang X, Xiao D, et al. nicotine inhibits cisplatin-induced apoptosis via regulating alpha5-nAChR/AKT signaling in human gastric cancer cells. PLoS ONE. 2016;11(2):e0149120. https://doi.org/10.1371/journal.pone.0149120 .
doi: 10.1371/journal.pone.0149120
pubmed: 26909550
pmcid: 4765889
Khalil AA, Jameson MJ, Broaddus WC, Lin PS, Chung TD. Nicotine enhances proliferation, migration, and radioresistance of human malignant glioma cells through EGFR activation. Brain Tumor Pathol. 2013;30(2):73–83. https://doi.org/10.1007/s10014-012-0101-5 .
doi: 10.1007/s10014-012-0101-5
pubmed: 22614999
Medjber K, Freidja ML, Grelet S, Lorenzato M, Maouche K, Nawrocki-Raby B, et al. Role of nicotinic acetylcholine receptors in cell proliferation and tumour invasion in broncho-pulmonary carcinomas. Lung Cancer. 2015;87(3):258–64. https://doi.org/10.1016/j.lungcan.2015.01.001 .
doi: 10.1016/j.lungcan.2015.01.001
pubmed: 25601486
Trombino S, Cesario A, Margaritora S, Granone P, Motta G, Falugi C, et al. Alpha7-nicotinic acetylcholine receptors affect growth regulation of human mesothelioma cells: role of mitogen-activated protein kinase pathway. Cancer Res. 2004;64(1):135–45.
doi: 10.1158/0008-5472.CAN-03-1672
Shin VY, Wu WK, Chu KM, Wong HP, Lam EK, Tai EK, et al. Nicotine induces cyclooxygenase-2 and vascular endothelial growth factor receptor-2 in association with tumor-associated invasion and angiogenesis in gastric cancer. Mol Cancer Res. 2005;3(11):607–15. https://doi.org/10.1158/1541-7786.MCR-05-0106 .
doi: 10.1158/1541-7786.MCR-05-0106
pubmed: 16317086
Zhang Q, Tang X, Zhang ZF, Velikina R, Shi S, Le AD. Nicotine induces hypoxia-inducible factor-1alpha expression in human lung cancer cells via nicotinic acetylcholine receptor-mediated signaling pathways. Clin Cancer Res. 2007;13(16):4686–94. https://doi.org/10.1158/1078-0432.CCR-06-2898 .
doi: 10.1158/1078-0432.CCR-06-2898
pubmed: 17699846
pmcid: 4166418
Lane D, Gray EA, Mathur RS, Mathur SP. Up-regulation of vascular endothelial growth factor-C by nicotine in cervical cancer cell lines. Am J Reprod Immunol. 2005;53(3):153–8. https://doi.org/10.1111/j.1600-0897.2005.00259.x .
doi: 10.1111/j.1600-0897.2005.00259.x
pubmed: 15727570
Wong HP, Yu L, Lam EK, Tai EK, Wu WK, Cho CH. Nicotine promotes colon tumor growth and angiogenesis through beta-adrenergic activation. Toxicol Sci. 2007;97(2):279–87. https://doi.org/10.1093/toxsci/kfm060 .
doi: 10.1093/toxsci/kfm060
pubmed: 17369603
Dasgupta P, Rizwani W, Pillai S, Kinkade R, Kovacs M, Rastogi S, et al. Nicotine induces cell proliferation, invasion and epithelial-mesenchymal transition in a variety of human cancer cell lines. Int J Cancer. 2009;124(1):36–45. https://doi.org/10.1002/ijc.23894 .
doi: 10.1002/ijc.23894
pubmed: 18844224
pmcid: 2826200
Kunigal S, Ponnusamy MP, Momi N, Batra SK, Chellappan SP. Nicotine, IFN-gamma and retinoic acid mediated induction of MUC4 in pancreatic cancer requires E2F1 and STAT-1 transcription factors and utilize different signaling cascades. Mol Cancer. 2012;11:24. https://doi.org/10.1186/1476-4598-11-24 .
doi: 10.1186/1476-4598-11-24
pubmed: 22537161
pmcid: 3464875
Shin VY, Jin HC, Ng EK, Sung JJ, Chu KM, Cho CH. Activation of 5-lipoxygenase is required for nicotine mediated epithelial-mesenchymal transition and tumor cell growth. Cancer Lett. 2010;292(2):237–45. https://doi.org/10.1016/j.canlet.2009.12.011 .
doi: 10.1016/j.canlet.2009.12.011
pubmed: 20061081
Wei PL, Kuo LJ, Huang MT, Ting WC, Ho YS, Wang W, et al. Nicotine enhances colon cancer cell migration by induction of fibronectin. Ann Surg Oncol. 2011;18(6):1782–90. https://doi.org/10.1245/s10434-010-1504-3 .
doi: 10.1245/s10434-010-1504-3
pubmed: 21210228
Xiang T, Fei R, Wang Z, Shen Z, Qian J, Chen W. Nicotine enhances invasion and metastasis of human colorectal cancer cells through the nicotinic acetylcholine receptor downstream p38 MAPK signaling pathway. Oncol Rep. 2016;35(1):205–10. https://doi.org/10.3892/or.2015.4363 .
doi: 10.3892/or.2015.4363
pubmed: 26530054
Zhang C, Ding XP, Zhao QN, Yang XJ, An SM, Wang H, et al. Role of alpha7-nicotinic acetylcholine receptor in nicotine-induced invasion and epithelial-to-mesenchymal transition in human non-small cell lung cancer cells. Oncotarget. 2016;7(37):59199–208. https://doi.org/10.18632/oncotarget.10498 .
doi: 10.18632/oncotarget.10498
pubmed: 27409670
pmcid: 5312305
Zong Y, Zhang ST, Zhu ST. Nicotine enhances migration and invasion of human esophageal squamous carcinoma cells which is inhibited by nimesulide. World J Gastroenterol. 2009;15(20):2500–5. https://doi.org/10.3748/wjg.15.2500 .
doi: 10.3748/wjg.15.2500
pubmed: 19469000
pmcid: 2686908
Guo J, Ibaragi S, Zhu T, Luo LY, Hu GF, Huppi PS, et al. Nicotine promotes mammary tumor migration via a signaling cascade involving protein kinase C and CDC42. Cancer Res. 2008;68(20):8473–81. https://doi.org/10.1158/0008-5472.CAN-08-0131 .
doi: 10.1158/0008-5472.CAN-08-0131
pubmed: 18922921
pmcid: 3698481
Zheng Y, Ritzenthaler JD, Roman J, Han S. Nicotine stimulates human lung cancer cell growth by inducing fibronectin expression. Am J Respir Cell Mol Biol. 2007;37(6):681–90. https://doi.org/10.1165/rcmb.2007-0051OC .
doi: 10.1165/rcmb.2007-0051OC
pubmed: 17600315
Banerjee J, Al-Wadei HA, Schuller HM. Chronic nicotine inhibits the therapeutic effects of gemcitabine on pancreatic cancer in vitro and in mouse xenografts. Eur J Cancer. 2013;49(5):1152–8. https://doi.org/10.1016/j.ejca.2012.10.015 .
doi: 10.1016/j.ejca.2012.10.015
pubmed: 23146955
Carlisle DL, Liu X, Hopkins TM, Swick MC, Dhir R, Siegfried JM. Nicotine activates cell-signaling pathways through muscle-type and neuronal nicotinic acetylcholine receptors in non-small cell lung cancer cells. Pulm Pharmacol Ther. 2007;20(6):629–41. https://doi.org/10.1016/j.pupt.2006.07.001 .
doi: 10.1016/j.pupt.2006.07.001
pubmed: 17015027
Dasgupta P, Kinkade R, Joshi B, Decook C, Haura E, Chellappan S. Nicotine inhibits apoptosis induced by chemotherapeutic drugs by up-regulating XIAP and survivin. Proc Natl Acad Sci USA. 2006;103(16):6332–7. https://doi.org/10.1073/pnas.0509313103 .
doi: 10.1073/pnas.0509313103
pubmed: 16601104
Tsurutani J, Castillo SS, Brognard J, Granville CA, Zhang C, Gills JJ, et al. Tobacco components stimulate Akt-dependent proliferation and NFkappaB-dependent survival in lung cancer cells. Carcinogenesis. 2005;26(7):1182–95. https://doi.org/10.1093/carcin/bgi072 .
doi: 10.1093/carcin/bgi072
pubmed: 15790591
Chen RJ, Ho YS, Guo HR, Wang YJ. Long-term nicotine exposure-induced chemoresistance is mediated by activation of Stat3 and downregulation of ERK1/2 via nAChR and beta-adrenoceptors in human bladder cancer cells. Toxicol Sci. 2010;115(1):118–30. https://doi.org/10.1093/toxsci/kfq028 .
doi: 10.1093/toxsci/kfq028
pubmed: 20106947
Chipitsyna G, Gong Q, Anandanadesan R, Alnajar A, Batra SK, Wittel UA, et al. Induction of osteopontin expression by nicotine and cigarette smoke in the pancreas and pancreatic ductal adenocarcinoma cells. Int J Cancer. 2009;125(2):276–85. https://doi.org/10.1002/ijc.24388 .
doi: 10.1002/ijc.24388
pubmed: 19358273
pmcid: 4465299
Dinicola S, Morini V, Coluccia P, Proietti S, D'Anselmi F, Pasqualato A, et al. Nicotine increases survival in human colon cancer cells treated with chemotherapeutic drugs. Toxicol In Vitro. 2013;27(8):2256–63. https://doi.org/10.1016/j.tiv.2013.09.020 .
doi: 10.1016/j.tiv.2013.09.020
pubmed: 24095863
Imabayashi T, Uchino J, Osoreda H, Tanimura K, Chihara Y, Tamiya N, et al. Nicotine induces resistance to erlotinib therapy in non-small-cell lung cancer cells treated with serum from human patients. Cancers (Basel). 2019. https://doi.org/10.3390/cancers11030282 .
doi: 10.3390/cancers11030282
Nishioka T, Luo LY, Shen L, He H, Mariyannis A, Dai W, et al. Nicotine increases the resistance of lung cancer cells to cisplatin through enhancing Bcl-2 stability. Br J Cancer. 2014;110(7):1785–92. https://doi.org/10.1038/bjc.2014.78 .
doi: 10.1038/bjc.2014.78
pubmed: 24548862
pmcid: 3974091
Shimizu R, Ibaragi S, Eguchi T, Kuwajima D, Kodama S, Nishioka T, et al. Nicotine promotes lymph node metastasis and cetuximab resistance in head and neck squamous cell carcinoma. Int J Oncol. 2019;54(1):283–94. https://doi.org/10.3892/ijo.2018.4631 .
doi: 10.3892/ijo.2018.4631
pubmed: 30431077
Xin M, Deng X. Nicotine inactivation of the proapoptotic function of Bax through phosphorylation. J Biol Chem. 2005;280(11):10781–9. https://doi.org/10.1074/jbc.M500084200
doi: 10.1074/jbc.M500084200
pubmed: 15642728
Yuge K, Kikuchi E, Hagiwara M, Yasumizu Y, Tanaka N, Kosaka T, et al. Nicotine induces tumor growth and chemoresistance through activation of the PI3K/Akt/mTOR pathway in bladder cancer. Mol Cancer Ther. 2015;14(9):2112–200. https://doi.org/10.1158/1535-7163.MCT-15-0140 .
doi: 10.1158/1535-7163.MCT-15-0140
pubmed: 26184482
Wong HP, Yu L, Lam EK, Tai EK, Wu WK, Cho CH. Nicotine promotes cell proliferation via alpha7-nicotinic acetylcholine receptor and catecholamine-synthesizing enzymes-mediated pathway in human colon adenocarcinoma HT-29 cells. Toxicol Appl Pharmacol. 2007;221(3):261–7. https://doi.org/10.1016/j.taap.2007.04.002 .
doi: 10.1016/j.taap.2007.04.002
pubmed: 17498763
Al-Wadei HA, Al-Wadei MH, Schuller HM. Cooperative regulation of non-small cell lung carcinoma by nicotinic and beta-adrenergic receptors: a novel target for intervention. PLoS ONE. 2012;7(1):e29915. https://doi.org/10.1371/journal.pone.0029915 .
doi: 10.1371/journal.pone.0029915
pubmed: 22253823
pmcid: 3257239
Zhang C, Yu P, Zhu L, Zhao Q, Lu X, Bo S. Blockade of alpha7 nicotinic acetylcholine receptors inhibit nicotine-induced tumor growth and vimentin expression in non-small cell lung cancer through MEK/ERK signaling way. Oncol Rep. 2017;38(6):3309–18. https://doi.org/10.3892/or.2017.6014 .
doi: 10.3892/or.2017.6014
pubmed: 29039603
pmcid: 5783576
Brown KC, Lau JK, Dom AM, Witte TR, Luo H, Crabtree CM, et al. MG624, an alpha7-nAChR antagonist, inhibits angiogenesis via the Egr-1/FGF2 pathway. Angiogenesis. 2012;15(1):99–114. https://doi.org/10.1007/s10456-011-9246-9 .
doi: 10.1007/s10456-011-9246-9
pubmed: 22198237
Davis R, Rizwani W, Banerjee S, Kovacs M, Haura E, Coppola D, et al. Nicotine promotes tumor growth and metastasis in mouse models of lung cancer. PLoS ONE. 2009;4(10):e7524. https://doi.org/10.1371/journal.pone.0007524 .
doi: 10.1371/journal.pone.0007524
pubmed: 19841737
pmcid: 2759510
Heeschen C, Jang JJ, Weis M, Pathak A, Kaji S, Hu RS, et al. Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nat Med. 2001;7(7):833–9. https://doi.org/10.1038/89961 .
doi: 10.1038/89961
pubmed: 11433349
Shin VY, Wu WK, Ye YN, So WH, Koo MW, Liu ES, et al. Nicotine promotes gastric tumor growth and neovascularization by activating extracellular signal-regulated kinase and cyclooxygenase-2. Carcinogenesis. 2004;25(12):2487–95. https://doi.org/10.1093/carcin/bgh266 .
doi: 10.1093/carcin/bgh266
pubmed: 15319299
Trevino JG, Pillai S, Kunigal S, Singh S, Fulp WJ, Centeno BA, et al. Nicotine induces inhibitor of differentiation-1 in a Src-dependent pathway promoting metastasis and chemoresistance in pancreatic adenocarcinoma. Neoplasia. 2012;14(12):1102–14. https://doi.org/10.1593/neo.121044 .
doi: 10.1593/neo.121044
pubmed: 23308043
pmcid: 3540937
Ye YN, Liu ES, Shin VY, Wu WK, Luo JC, Cho CH. Nicotine promoted colon cancer growth via epidermal growth factor receptor, c-Src, and 5-lipoxygenase-mediated signal pathway. J Pharmacol Exp Ther. 2004;308(1):66–72. https://doi.org/10.1124/jpet.103.058321 .
doi: 10.1124/jpet.103.058321
pubmed: 14569062
Li H, Wang S, Takayama K, Harada T, Okamoto I, Iwama E, et al. Nicotine induces resistance to erlotinib via cross-talk between alpha 1 nAChR and EGFR in the non-small cell lung cancer xenograft model. Lung Cancer. 2015;88(1):1–8. https://doi.org/10.1016/j.lungcan.2015.01.017 .
doi: 10.1016/j.lungcan.2015.01.017
pubmed: 25670150
Warren GW, Romano MA, Kudrimoti MR, Randall ME, McGarry RC, Singh AK, et al. Nicotinic modulation of therapeutic response in vitro and in vivo. Int J Cancer. 2012;131(11):2519–27. https://doi.org/10.1002/ijc.27556 .
doi: 10.1002/ijc.27556
pubmed: 22447412
Zhu BQ, Heeschen C, Sievers RE, Karliner JS, Parmley WW, Glantz SA, et al. Second hand smoke stimulates tumor angiogenesis and growth. Cancer Cell. 2003;4(3):191–6. https://doi.org/10.1016/s1535-6108(03)00219-8 .
doi: 10.1016/s1535-6108(03)00219-8
pubmed: 14522253
Rimmaudo LE, de la Torre E, Sacerdote de Lustig E, Sales ME. Muscarinic receptors are involved in LMM3 tumor cells proliferation and angiogenesis. Biochem Biophys Res Commun. 2005;334(4):1359–64. https://doi.org/10.1016/j.bbrc.2005.07.031 .
doi: 10.1016/j.bbrc.2005.07.031
pubmed: 16040004
Espanol A, Eijan AM, Mazzoni E, Davel L, Jasnis MA, Sacerdote De Lustig E, et al. Nitric oxide synthase, arginase and cyclooxygenase are involved in muscarinic receptor activation in different murine mammary adenocarcinoma cell lines. Int J Mol Med. 2002;9(6):651–7.
pubmed: 12011984
Espanol AJ, Sales ME. Different muscarinic receptors are involved in the proliferation of murine mammary adenocarcinoma cell lines. Int J Mol Med. 2004;13(2):311–7.
pubmed: 14719140
Espanol AJ, Salem A, Rojo D, Sales ME. Participation of non-neuronal muscarinic receptors in the effect of carbachol with paclitaxel on human breast adenocarcinoma cells. Roles of nitric oxide synthase and arginase. Int Immunopharmacol. 2015;29(1):87–92. https://doi.org/10.1016/j.intimp.2015.03.018 .
doi: 10.1016/j.intimp.2015.03.018
pubmed: 25812766
Cheng K, Samimi R, Xie G, Shant J, Drachenberg C, Wade M, et al. Acetylcholine release by human colon cancer cells mediates autocrine stimulation of cell proliferation. Am J Physiol Gastrointest Liver Physiol. 2008;295(3):G591–G597597. https://doi.org/10.1152/ajpgi.00055.2008 .
doi: 10.1152/ajpgi.00055.2008
pubmed: 18653726
pmcid: 2536781
Cheng K, Shang AC, Drachenberg CB, Zhan M, Raufman JP. Differential expression of M3 muscarinic receptors in progressive colon neoplasia and metastasis. Oncotarget. 2017;8(13):21106–14. https://doi.org/10.18632/oncotarget.15500 .
doi: 10.18632/oncotarget.15500
pubmed: 28416748
pmcid: 5400569
Frucht H, Jensen RT, Dexter D, Yang WL, Xiao Y. Human colon cancer cell proliferation mediated by the M3 muscarinic cholinergic receptor. Clin Cancer Res. 1999;5(9):2532–9.
pubmed: 10499630
Raufman JP, Samimi R, Shah N, Khurana S, Shant J, Drachenberg C, et al. Genetic ablation of M3 muscarinic receptors attenuates murine colon epithelial cell proliferation and neoplasia. Cancer Res. 2008;68(10):3573–8. https://doi.org/10.1158/0008-5472.CAN-07-6810 .
doi: 10.1158/0008-5472.CAN-07-6810
pubmed: 18483237
pmcid: 2577901
Peng Z, Heath J, Drachenberg C, Raufman JP, Xie G. Cholinergic muscarinic receptor activation augments murine intestinal epithelial cell proliferation and tumorigenesis. BMC Cancer. 2013;13:204. https://doi.org/10.1186/1471-2407-13-204 .
doi: 10.1186/1471-2407-13-204
pubmed: 23617763
pmcid: 3640951
Xie G, Cheng K, Shant J, Raufman JP. Acetylcholine-induced activation of M3 muscarinic receptors stimulates robust matrix metalloproteinase gene expression in human colon cancer cells. Am J Physiol Gastrointest Liver Physiol. 2009;296(4):G755–G763763. https://doi.org/10.1152/ajpgi.90519.2008 .
doi: 10.1152/ajpgi.90519.2008
pubmed: 19221016
pmcid: 2670666
Raufman JP, Cheng K, Saxena N, Chahdi A, Belo A, Khurana S, et al. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells. Biochem Biophys Res Commun. 2011;415(2):319–24. https://doi.org/10.1016/j.bbrc.2011.10.052 .
doi: 10.1016/j.bbrc.2011.10.052
pubmed: 22027145
pmcid: 3221914
Cheng K, Zimniak P, Raufman JP. Transactivation of the epidermal growth factor receptor mediates cholinergic agonist-induced proliferation of H508 human colon cancer cells. Cancer Res. 2003;63(20):6744–50.
pubmed: 14583469
Zhao Q, Gu X, Zhang C, Lu Q, Chen H, Xu L. Blocking M2 muscarinic receptor signaling inhibits tumor growth and reverses epithelial-mesenchymal transition (EMT) in non-small cell lung cancer (NSCLC). Cancer Biol Ther. 2015;16(4):634–43. https://doi.org/10.1080/15384047.2015.1029835 .
doi: 10.1080/15384047.2015.1029835
pubmed: 25778781
pmcid: 4622973
Zhao Q, Yue J, Zhang C, Gu X, Chen H, Xu L. Inactivation of M2 AChR/NF-kappaB signaling axis reverses epithelial-mesenchymal transition (EMT) and suppresses migration and invasion in non-small cell lung cancer (NSCLC). Oncotarget. 2015;6(30):29335–46. https://doi.org/10.18632/oncotarget.5004 .
doi: 10.18632/oncotarget.5004
pubmed: 26336823
pmcid: 4745730
Hua N, Wei X, Liu X, Ma X, He X, Zhuo R, et al. A novel muscarinic antagonist R2HBJJ inhibits non-small cell lung cancer cell growth and arrests the cell cycle in G0/G1. PLoS ONE. 2012;7(12):e53170. https://doi.org/10.1371/journal.pone.0053170 .
doi: 10.1371/journal.pone.0053170
pubmed: 23285263
pmcid: 3532118
Ami N, Koga K, Fushiki H, Ueno Y, Ogino Y, Ohta H. Selective M3 muscarinic receptor antagonist inhibits small-cell lung carcinoma growth in a mouse orthotopic xenograft model. J Pharmacol Sci. 2011;116(1):81–8. https://doi.org/10.1254/jphs.10308FP .
doi: 10.1254/jphs.10308FP
pubmed: 21512307
Song P, Sekhon HS, Lu A, Arredondo J, Sauer D, Gravett C, et al. M3 muscarinic receptor antagonists inhibit small cell lung carcinoma growth and mitogen-activated protein kinase phosphorylation induced by acetylcholine secretion. Cancer Res. 2007;67(8):3936–44. https://doi.org/10.1158/0008-5472.CAN-06-2484 .
doi: 10.1158/0008-5472.CAN-06-2484
pubmed: 17440109
Yu H, Xia H, Tang Q, Xu H, Wei G, Chen Y, et al. Acetylcholine acts through M3 muscarinic receptor to activate the EGFR signaling and promotes gastric cancer cell proliferation. Sci Rep. 2017;7:40802. https://doi.org/10.1038/srep40802 .
doi: 10.1038/srep40802
pubmed: 28102288
pmcid: 5244394
Yang T, He W, Cui F, Xia J, Zhou R, Wu Z, et al. MACC1 mediates acetylcholine-induced invasion and migration by human gastric cancer cells. Oncotarget. 2016;7(14):18085–944. https://doi.org/10.18632/oncotarget.7634 .
doi: 10.18632/oncotarget.7634
pubmed: 26919111
pmcid: 4951273
Nguyen PH, Touchefeu Y, Durand T, Aubert P, Duchalais E, Bruley des Varannes S, et al. Acetylcholine induces stem cell properties of gastric cancer cells of diffuse type. Tumour Biol. 2018;40(9):1010428318799028. https://doi.org/10.1177/1010428318799028 .
doi: 10.1177/1010428318799028
pubmed: 30207200
Mannan Baig A, Khan NA, Effendi V, Rana Z, Ahmad HR, Abbas F. Differential receptor dependencies: expression and significance of muscarinic M1 receptors in the biology of prostate cancer. Anticancer Drugs. 2017;28(1):75–877. https://doi.org/10.1097/CAD.0000000000000432 .
doi: 10.1097/CAD.0000000000000432
pubmed: 27606721
Wang N, Yao M, Xu J, Quan Y, Zhang K, Yang R, et al. Autocrine activation of CHRM3 promotes prostate cancer growth and castration resistance via CaM/CaMKK-mediated phosphorylation of Akt. Clin Cancer Res. 2015;21(20):4676–85. https://doi.org/10.1158/1078-0432.CCR-14-3163 .
doi: 10.1158/1078-0432.CCR-14-3163
pubmed: 26071486
Parnell EA, Calleja-Macias IE, Kalantari M, Grando SA, Bernard HU. Muscarinic cholinergic signaling in cervical cancer cells affects cell motility via ERK1/2 signaling. Life Sci. 2012;91(21–22):1093–8. https://doi.org/10.1016/j.lfs.2012.02.020 .
doi: 10.1016/j.lfs.2012.02.020
pubmed: 22406505
Alessandrini F, Cristofaro I, Di Bari M, Zasso J, Conti L, Tata AM. The activation of M2 muscarinic receptor inhibits cell growth and survival in human glioblastoma cancer stem cells. Int Immunopharmacol. 2015;29(1):105–9. https://doi.org/10.1016/j.intimp.2015.05.032 .
doi: 10.1016/j.intimp.2015.05.032
pubmed: 26033491
Cristofaro I, Spinello Z, Matera C, Fiore M, Conti L, De Amici M, et al. Activation of M2 muscarinic acetylcholine receptors by a hybrid agonist enhances cytotoxic effects in GB7 glioblastoma cancer stem cells. Neurochem Int. 2018;118:52–60. https://doi.org/10.1016/j.neuint.2018.04.010 .
doi: 10.1016/j.neuint.2018.04.010
pubmed: 29702145