Liver regeneration after performing associating liver partition and portal vein occlusion for staged hepatectomy (ALPPS) is histologically similar to that occurring after liver transplantation using a small-for-size graft.
ALPPS
Liver regeneration
Small-for-size syndrome
Journal
Surgery today
ISSN: 1436-2813
Titre abrégé: Surg Today
Pays: Japan
ID NLM: 9204360
Informations de publication
Date de publication:
Mar 2021
Mar 2021
Historique:
received:
20
03
2020
accepted:
20
07
2020
pubmed:
11
8
2020
medline:
16
6
2021
entrez:
11
8
2020
Statut:
ppublish
Résumé
Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) can achieve marked future liver remnant (FLR) hypertrophy but this procedure is associated with a risk of mortality due to liver failure because of an insufficient FLR functional increase, a situation comparable to small-for-size syndrome (SFSS) after living-donor liver transplantation (LDLT). The clinical data, morphologic volume changes, and histopathologic and immunohistochemical findings in hepatocytes and bile ductules were compared between ALPPS (n = 10) and LDLT with a risk for SFSS (n = 12). Although the patient characteristics and short-term outcome differed between the groups, the mean hypertrophy ratios with respect to liver volume for the FLR after performing the first-stage ALPPS procedures resembled those in small-for-size grafts after similar time intervals: 1.702 ± 0.407 in ALPPS vs. 1.948 ± 0.252 in LDLT (P = 0.205). The histologic grades for sinusoidal dilation (P = 0.896), congestion (P = 0.922), vacuolar change (P = 0.964), hepatocanalicular cholestasis (P = 0.969), and ductular reaction (P = 0.728) within the FLR at the second-stage operation during ALPPS or implanted graft were all similar between the groups. The hepatic regenerative process may be similar in ALPPS and LDLT using a small-for-size graft. Reducing the hepatic vascular inflow that may be excessive for the FLR volume during the first stage of ALPPS might enhance the functional recovery since measures with a similar effect appear to lessen the likelihood of SFSS.
Identifiants
pubmed: 32772152
doi: 10.1007/s00595-020-02097-1
pii: 10.1007/s00595-020-02097-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
374-383Références
Schnitzbauer AA, Lang SA, Goessmann H, Nadalin S, Baumgart J, Farkas SA, et al. Right portal vein ligation combined with in situ splitting induces rapid left lateral liver lobe hypertrophy enabling 2-staged extended right hepatic resection in small-for-size settings. Ann Surg. 2012;255:405–14.
doi: 10.1097/SLA.0b013e31824856f5
Linecker M, Kron P, Lang H, de Santibañes E, Clavien PA. Too many languages in the ALPPS: preventing another tower of babel? Ann Surg. 2016;263:837–8.
doi: 10.1097/SLA.0000000000001632
Alvarez FA, Iniesta J, Lastiri J, Ulla M, Bonadeo Lassalle F, et al. New method of hepatic regeneration. Cir Esp. 2011;89:645–9.
doi: 10.1016/j.ciresp.2011.08.001
de Santibañes E, Alvarez FA, Ardiles V. How to avoid postoperative liver failure: a novel method. World J Surg. 2012;36:125–8.
doi: 10.1007/s00268-011-1331-0
Schadde E, Ardiles V, Robles-Campos R, Malago M, Machado M, Hernandez-Alejandro R, et al. Early survival and safety of ALPPS: first report of the international ALPPS registry. Ann Surg. 2014;260:829–38.
doi: 10.1097/SLA.0000000000000947
Schadde E, Raptis DA, Schnitzbauer AA, Ardiles V, Tschuor C, Lesurtel M, et al. Prediction of mortality after ALPPS stage-1: an analysis of 320 patients from the International ALPPS Registry. Ann Surg. 2015;262:780–6.
doi: 10.1097/SLA.0000000000001450
Tanaka K, Matsuo K, Murakami T, Kawaguchi D, Hiroshima Y, Koda K, et al. Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS): short-term outcome, functional changes in the future liver remnant, and tumor growth activity. Eur J Surg Oncol. 2015;41:506–12.
doi: 10.1016/j.ejso.2015.01.031
Matsuo K, Murakami T, Kawaguchi D, Hiroshima Y, Koda K, Yamazaki K, et al. Histologic features after surgery associating liver partition and portal vein ligation for staged hepatectomy versus those after hepatectomy with portal vein embolization. Surgery. 2016;159:1289–98.
doi: 10.1016/j.surg.2015.12.004
Matsuo K, Hiroshima Y, Yamazaki K, Kasahara K, Kikuchi Y, Kawaguchi D, et al. Immaturity of bile canalicular-ductule networks in the future liver remnant while associating liver partition and portal vein occlusion for staged hepatectomy (ALPPS). Ann Surg Oncol. 2017;24:2456–64.
doi: 10.1245/s10434-017-5922-3
Kiuchi T, Kasahara M, Uryuhara K, Inomata Y, Uemoto S, Asonuma K, et al. Impact of graft size mismatching on graft prognosis in liver transplantation from living donors. Transplantation. 1999;67:321–7.
doi: 10.1097/00007890-199901270-00024
Ikegami T, Shimada M, Imura S, Arakawa Y, Nii A, Morine Y, et al. Current concept of small-for-size grafts in living donor liver transplantation. Surg Today. 2008;38:971–82.
doi: 10.1007/s00595-008-3771-1
Vos TA, Ros JE, Havinga R, Moshage H, Kuipers F, Jansen PL, et al. Regulation of hepatic transport systems involved in bile secretion during liver regeneration in rats. Hepatology. 1999;29:1833–9.
doi: 10.1002/hep.510290638
Furukawa H, Kishida A, Omura T, Kamiyama T, Suzuki T, Matsushita M, et al. Indication and strategy for adult living related liver transplantation. Transplant Proc. 1999;31:1952.
doi: 10.1016/S0041-1345(99)00225-0
Couinaud C. Surgical anatomy of the liver revisited. Pers ed, Paris; 1989.
Tanaka K, Kikuchi Y, Kawaguchi D, Murakami T, Hiroshima Y, Matsuo K. Modified ALPPS procedures avoiding division of portal pedicles. Ann Surg. 2017;265:e14–e20.
doi: 10.1097/SLA.0000000000001967
Yamanaka N, Okamoto E, Oriyama T, Fujimoto J, Furukawa K, Kawamura E, et al. A prediction scoring system to select the surgical treatment of liver cancer. Further refinement based on 10 years of use. Ann Surg. 1994;219:342–6.
doi: 10.1097/00000658-199404000-00003
Urata K, Kawasaki S, Matsunami H, Hashikura Y, Ikegami T, Ishizone S, et al. Calculation of child and adult standard liver volume for liver transplantation. Hepatology. 1995;21:1317–21.
doi: 10.1002/hep.1840210515
Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240:205–13.
doi: 10.1097/01.sla.0000133083.54934.ae
Rahbari NN, Garden OJ, Padbury R, Brooke-Smith M, Crawford M, Adam R, et al. Posthepatectomy liver failure: a definition and grading by the international study group of liver surgery (ISGLS). Surgery. 2011;149:713–24.
doi: 10.1016/j.surg.2010.10.001
Mills SE. Bile ducts. In: Mills SE, editor. Histology for pathologists. 3rd ed. Philadelphia: Lippincott Williams and Wilkins; 2006. p. 693–694.
Emond JC, Renz JF, Ferrell LD, Rosenthal P, Lim RC, Roberts JP, et al. Functional analysis of grafts from living donors. Implications for the treatment of older recipients. Ann Surg. 1996;224:544–54.
doi: 10.1097/00000658-199610000-00012
Troisi R, Praet M, de Hemptinne B. Small-for-size syndrome: what is the problem? Liver Transpl. 2003;9:S1.
doi: 10.1053/jlts.2003.50193
Heaton N. Small-for-size liver syndrome after auxiliary and split liver transplantation: donor selection. Liver Transpl. 2003;9:S26–S2828.
doi: 10.1053/jlts.2003.50197
Asencio JM, Vaquero J, Olmedilla L, García Sabrido JL. “Small-for-flow” syndrome: shifting the “size” paradigm. Med Hypotheses. 2013;80:573–7.
doi: 10.1016/j.mehy.2013.01.028
Badawy A, Hamaguchi Y, Seo S, Kaido T, Okajima H, Uemoto S. Evaluation of safety of concomitant splenectomy in living donor liver transplantation: a retrospective study. Transpl Int. 2017;30:914–23.
doi: 10.1111/tri.12985
Man K, Lo CM, Ng IO, Wong YC, Qin LF, Fan ST, et al. Liver transplantation in rats using small-for-size grafts: a study of hemodynamic and morphological changes. Arch Surg. 2001;136:280–5.
doi: 10.1001/archsurg.136.3.280
Roskams T, Desmet V. Ductular reaction and its diagnostic significance. Semin Diagn Pathol. 1998;15:259–69.
pubmed: 9845427
Sherlock SH, Dooley J. Cholestasis. In: Sherlock SH, Dooley J, editors. Disease of the liver and biliary system. 11th ed. Oxford: Blackwell scientific; 2002. p. 223.
Michalopoulos GK, DeFrances MC. Liver regeneration. Science. 1997;276:60–6.
doi: 10.1126/science.276.5309.60
Ninomiya M, Shirabe K, Terashi T, Ijichi H, Yonemura Y, Harada N, et al. Deceleration of regenerative response improves the outcome of rat with massive hepatectomy. Am J Transplant. 2010;10:1580–7.
doi: 10.1111/j.1600-6143.2010.03150.x
Ninomiya M, Shimada M, Terashi T, Ijichi H, Yonemura Y, Harada N, et al. Sustained spatial disturbance of bile canalicular networks during regeneration of the steatotic rat liver. Transplantation. 2004;77:373–9.
doi: 10.1097/01.TP.0000109777.51902.09
Morsiani E, Aleotti A, Ricci D. Haemodynamic and ultrastructural observations on the rat liver after two-thirds partial hepatectomy. J Anat. 1998;192:507–15.
doi: 10.1046/j.1469-7580.1998.19240507.x
Kurata N, Ogura Y, Ogiso S, Onishi Y, Kamei H, Kodera Y. Splenectomy in living donor liver transplantation and risk factors of portal vein thrombosis. Hepatobiliary Pancreat Dis Int. 2019;18:337–42.
doi: 10.1016/j.hbpd.2019.06.011
Troisi RI, Berardi G, Tomassini F, Sainz-Barriga M. Graft inflow modulation in adult-to-adult living donor liver transplantation: a systematic review. Transplant Rev (Orlando). 2017;31:127–35.
doi: 10.1016/j.trre.2016.11.002