A machine-learning framework for robust and reliable prediction of short- and long-term treatment response in initially antipsychotic-naïve schizophrenia patients based on multimodal neuropsychiatric data.


Journal

Translational psychiatry
ISSN: 2158-3188
Titre abrégé: Transl Psychiatry
Pays: United States
ID NLM: 101562664

Informations de publication

Date de publication:
10 08 2020
Historique:
received: 25 02 2020
accepted: 22 07 2020
revised: 14 07 2020
entrez: 12 8 2020
pubmed: 12 8 2020
medline: 22 6 2021
Statut: epublish

Résumé

The reproducibility of machine-learning analyses in computational psychiatry is a growing concern. In a multimodal neuropsychiatric dataset of antipsychotic-naïve, first-episode schizophrenia patients, we discuss a workflow aimed at reducing bias and overfitting by invoking simulated data in the design process and analysis in two independent machine-learning approaches, one based on a single algorithm and the other incorporating an ensemble of algorithms. We aimed to (1) classify patients from controls to establish the framework, (2) predict short- and long-term treatment response, and (3) validate the methodological framework. We included 138 antipsychotic-naïve, first-episode schizophrenia patients with data on psychopathology, cognition, electrophysiology, and structural magnetic resonance imaging (MRI). Perinatal data and long-term outcome measures were obtained from Danish registers. Short-term treatment response was defined as change in Positive And Negative Syndrome Score (PANSS) after the initial antipsychotic treatment period. Baseline diagnostic classification algorithms also included data from 151 matched controls. Both approaches significantly classified patients from healthy controls with a balanced accuracy of 63.8% and 64.2%, respectively. Post-hoc analyses showed that the classification primarily was driven by the cognitive data. Neither approach predicted short- nor long-term treatment response. Validation of the framework showed that choice of algorithm and parameter settings in the real data was successfully guided by results from the simulated data. In conclusion, this novel approach holds promise as an important step to minimize bias and obtain reliable results with modest sample sizes when independent replication samples are not available.

Identifiants

pubmed: 32778656
doi: 10.1038/s41398-020-00962-8
pii: 10.1038/s41398-020-00962-8
pmc: PMC7417553
doi:

Substances chimiques

Antipsychotic Agents 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

276

Subventions

Organisme : Lundbeckfonden (Lundbeck Foundation)
ID : R155-2013-16337
Pays : International
Organisme : Lundbeckfonden (Lundbeck Foundation)
ID : R25-A2701
Pays : International
Organisme : Lundbeckfonden (Lundbeck Foundation)
ID : R25-A2701
Pays : International
Organisme : Lundbeckfonden (Lundbeck Foundation)
ID : R155-2013-16337
Pays : International
Organisme : Lundbeckfonden (Lundbeck Foundation)
ID : R155-2013-16337
Pays : International
Organisme : Lundbeckfonden (Lundbeck Foundation)
ID : R25-A2701
Pays : International
Organisme : Lundbeckfonden (Lundbeck Foundation)
ID : R25-A2701
Pays : International
Organisme : Lundbeckfonden (Lundbeck Foundation)
ID : R155-2013-16337
Pays : International
Organisme : Lundbeckfonden (Lundbeck Foundation)
ID : R25-A2701
Pays : International
Organisme : Lundbeckfonden (Lundbeck Foundation)
ID : R155-2013-16337
Pays : International
Organisme : Lundbeckfonden (Lundbeck Foundation)
ID : R246-2016-3237
Pays : International
Organisme : Lundbeckfonden (Lundbeck Foundation)
ID : R25-A2701
Pays : International
Organisme : Lundbeckfonden (Lundbeck Foundation)
ID : R155-2013-16337
Pays : International
Organisme : Department of Health | National Health and Medical Research Council (NHMRC)
ID : 1105825
Pays : International

Références

Beck, K. et al. Prevalence of treatment-resistant psychoses in the community: a naturalistic study. J. Psychopharmacol. 33, 1248–1253 (2019).
pubmed: 31241396 doi: 10.1177/0269881119855995
Howes, O. D. et al. Treatment-resistant schizophrenia: Treatment Response and Resistance in psychosis (TRRIP) Working Group Consensus Guidelines on Diagnosis and Terminology. AJP 174, 216–229 (2016).
doi: 10.1176/appi.ajp.2016.16050503
Haijma, S. V. et al. Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects. Schizophr. Bull. 39, 1129–1138 (2013).
pubmed: 23042112 doi: 10.1093/schbul/sbs118
van Erp, T. G. M. et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol. Psychiatry 21, 547–553 (2016).
doi: 10.1038/mp.2015.63 pubmed: 26033243
Owens, E., Bachman, P., Glahn, D. C. & Bearden, C. E. Electrophysiological endophenotypes for schizophrenia. Harv. Rev. Psychiatry 24, 129–147 (2016).
pubmed: 26954597 pmcid: 4785844 doi: 10.1097/HRP.0000000000000110
Randau, M. et al. Attenuated mismatch negativity in patients with first-episode antipsychotic-naive schizophrenia using a source-resolved method. NeuroImage: Clin. 22, 101760 (2019).
doi: 10.1016/j.nicl.2019.101760
Fatouros-Bergman, H., Cervenka, S., Flyckt, L., Edman, G. & Farde, L. Meta-analysis of cognitive performance in drug-naïve patients with schizophrenia. Schizophr. Res. 158, 156–162 (2014).
pubmed: 25086658 doi: 10.1016/j.schres.2014.06.034
Olabi, B. et al. Are there progressive brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies. Biol. Psychiatry 70, 88–96 (2011).
pubmed: 21457946 doi: 10.1016/j.biopsych.2011.01.032
Leung, M. et al. Gray matter in first-episode schizophrenia before and after antipsychotic drug treatment. Anatomical likelihood estimation meta-analyses with sample size weighting. Schizophr. Bull. 37, 199–211 (2011).
doi: 10.1093/schbul/sbp099 pubmed: 19759093
Arbabshirani, M. R., Plis, S., Sui, J. & Calhoun, V. D. Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. NeuroImage 145, 137–165 (2017).
pubmed: 27012503 doi: 10.1016/j.neuroimage.2016.02.079
Janssen, R. J., Mourão-Miranda, J. & Schnack, H. G. Making individual prognoses in psychiatry using neuroimaging and machine learning. Biol. Psychiatry.: Cogn. Neurosci. Neuroimaging 3, 798–808 (2018).
Vieira, S. et al. Using machine learning and structural neuroimaging to detect first episode psychosis: reconsidering the evidence. Schizophr. Bull. https://doi.org/10.1093/schbul/sby189 (2019).
Winterburn, J. L. et al. Can we accurately classify schizophrenia patients from healthy controls using magnetic resonance imaging and machine learning? A multi-method and multi-dataset study. Schizophr. Res. https://doi.org/10.1016/j.schres.2017.11.038 (2017).
Cearns, M., Hahn, T. & Baune, B. T. Recommendations and future directions for supervised machine learning in psychiatry. Transl. Psychiatry 9, 1–12 (2019).
doi: 10.1038/s41398-018-0355-8
Doan, N. T. et al. Distinct multivariate brain morphological patterns and their added predictive value with cognitive and polygenic risk scores in mental disorders. NeuroImage: Clin. 15, 719–731 (2017).
doi: 10.1016/j.nicl.2017.06.014
Ebdrup, B. H. et al. Accuracy of diagnostic classification algorithms using cognitive-, electrophysiological-, and neuroanatomical data in antipsychotic-naïve schizophrenia patients. Psychol. Med. https://doi.org/10.1017/S0033291718003781 (2018).
Bak, N. et al. Two subgroups of antipsychotic-naive, first-episode schizophrenia patients identified with a Gaussian mixture model on cognition and electrophysiology. Transl. Psychiatry 7, e1087 (2017).
pubmed: 28398342 pmcid: 5416700 doi: 10.1038/tp.2017.59
Kelleher, J. D., Namee, B. M. & D’Arcy, A. Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies (The MIT Press, 2015).
Nørbak-Emig, H. et al. Extrastriatal dopamine D 2/3 receptors and cortical grey matter volumes in antipsychotic-naïve schizophrenia patients before and after initial antipsychotic treatment. World J. Biol. Psychiatry 18, 539–549 (2017).
pubmed: 27782768 doi: 10.1080/15622975.2016.1237042
Jessen, K. et al. Patterns of cortical structures and cognition in antipsychotic-naïve patients with first-episode schizophrenia: a partial least squares correlation analysis. Biol. Psychiatry.: Cogn. Neurosci. Neuroimaging 4, 444–453 (2019).
Wing, J. K. et al. SCAN. Schedules for Clinical Assessment in Neuropsychiatry. Arch. Gen. Psychiatry 47, 589–593 (1990).
doi: 10.1001/archpsyc.1990.01810180089012 pubmed: 2190539
Kay, S. R., Fiszbein, A. & Opler, L. A. The Positive and Negative Syndrome Scale (PANSS) for schizophrenia. Schizophr. Bull. 13, 261–276 (1987).
pubmed: 3616518 doi: 10.1093/schbul/13.2.261
Wimberley, T. et al. Predictors of treatment resistance in patients with schizophrenia: a population-based cohort study. Lancet Psychiatry 3, 358–366 (2016).
pubmed: 26922475 doi: 10.1016/S2215-0366(15)00575-1
Nelson, H. E. & O’Connell, A. Dementia: the estimation of premorbid intelligence levels using the New Adult Reading Test. Cortex 14, 234–244 (1978).
pubmed: 679704 doi: 10.1016/S0010-9452(78)80049-5
Wechsler, D. Manual for the Wechsler Adult Intelligence Scale (WAIS) (The Psychological Corporation, 1955).
Wechsler, D. WAIS-III Administration and Scoring Manual (The Psychological Corporation, 1997).
Robbins, T. W. et al. Cambridge Neuropsychological Test Automated Battery (CANTAB): a factor analytic study of a large sample of normal elderly volunteers. DEM 5, 266–281 (1994).
Keefe, R. S. E. et al. The brief assessment of cognition in schizophrenia: reliability, sensitivity, and comparison with a standard neurocognitive battery. Schizophr. Res. 68, 283–297 (2004).
pubmed: 15099610 doi: 10.1016/j.schres.2003.09.011
Buschke, H. Selective reminding for analysis of memory and learning. J. Verbal Learn. Verbal Behav. 12, 543–550 (1973).
doi: 10.1016/S0022-5371(73)80034-9
Smith, A. Symbol Digit Modalities Test (Western Psychological Services, Los Angeles, CA, 1982).
Reitan, R. & Wolfson, D. The Halstead-Reitan Neuropsychological Test Battery: Theory and Clinical Interpretation. Neuropsychology Press; 2nd edition (1993).
Milner, B. Effects of different brain lesions on card sorting: the role of the frontal lobes. Arch. Neurol. 9, 90–100 (1963).
doi: 10.1001/archneur.1963.00460070100010
Baddeley, A., Emslie, H. & Nimmo-Smith, I. The Speed and Capacity of Language-Processing Test (SCOLP)—Reference Materials (Pearson Assessment, 1992).
Jessen, K. et al. Cortical structures and their clinical correlates in antipsychotic-naïve schizophrenia patients before and after 6 weeks of dopamine D2/3 receptor antagonist treatment. Psychol. Med. 49, 754–763 (2019).
pubmed: 29734953 doi: 10.1017/S0033291718001198
Reuter, M., Rosas, H. D. & Fischl, B. Highly accurate inverse consistent registration: a robust approach. NeuroImage 53, 1181–1196 (2010).
pubmed: 20637289 doi: 10.1016/j.neuroimage.2010.07.020
Reuter, M. & Fischl, B. Avoiding asymmetry-induced bias in longitudinal image processing. NeuroImage 57, 19–21 (2011).
pubmed: 21376812 doi: 10.1016/j.neuroimage.2011.02.076
Reuter, M., Schmansky, N. J., Rosas, H. D. & Fischl, B. Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage 61, 1402–1418 (2012).
pubmed: 22430496 doi: 10.1016/j.neuroimage.2012.02.084
Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31, 968–980 (2006).
doi: 10.1016/j.neuroimage.2006.01.021 pubmed: 16530430
Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL. NeuroImage 62, 782–790 (2012).
pubmed: 21979382 doi: 10.1016/j.neuroimage.2011.09.015
Jensen, K. S., Oranje, B., Wienberg, M. & Glenthøj, B. Y. The effects of increased serotonergic activity on human sensory gating and its neural generators. Psychopharmacology 196, 631–641 (2008).
pubmed: 18000656 doi: 10.1007/s00213-007-1001-y
Oranje, B., Jensen, K., Wienberg, M. & Glenthøj, B. Y. Divergent effects of increased serotonergic activity on psychophysiological parameters of human attention. Int. J. Neuropsychopharmacol. 11, 453–463 (2008).
pubmed: 17971261 doi: 10.1017/S1461145707008176
Oranje, B. & Glenthøj, B. Y. Clonidine normalizes sensorimotor gating deficits in patients with schizophrenia on stable medication. Schizophrenia Bull. 39, 684–691 (2013).
doi: 10.1093/schbul/sbs071
Düring, S., Glenthøj, B. Y., Andersen, G. S. & Oranje, B. Effects of dopamine D2/D3 blockade on human sensory and sensorimotor gating in initially antipsychotic-naive, first-episode schizophrenia patients. Neuropsychopharmacology 39, 3000–3008 (2014).
pubmed: 24954063 pmcid: 4229570 doi: 10.1038/npp.2014.152
Düring, S., Glenthøj, B. Y. & Oranje, B. Effects of blocking D2/D3 receptors on mismatch negativity and P3a amplitude of initially antipsychotic naïve, first episode schizophrenia patients. Int. J. Neuropsychopharmacol. 19, 3 pyv109, https://doi.org/10.1093/ijnp/pyv109 (2015).
Donders, A. R. T., van der Heijden, G. J. M. G., Stijnen, T. & Moons, K. G. M. Review: A gentle introduction to imputation of missing values. J. Clin. Epidemiol. 59, 1087–1091 (2006).
pubmed: 16980149 doi: 10.1016/j.jclinepi.2006.01.014
Tipping, M. E. & Bishop, C. M. Mixtures of probabilistic principal component analyzers. Neural Comput. 11, 443–482 (1999).
pubmed: 9950739 doi: 10.1162/089976699300016728
Hansen, L. K. et al. Generalizable patterns in neuroimaging: how many principal components? NeuroImage 9, 534–544 (1999).
pubmed: 10329293 doi: 10.1006/nimg.1998.0425
Everitt, B. S. An Introduction to Latent Variable Models (Springer Science & Business Media, 2013).
Mouchlianitis, E., McCutcheon, R. & Howes, O. D. Brain-imaging studies of treatment-resistant schizophrenia: a systematic review. Lancet Psychiatry 3, 451–463 (2016).
pubmed: 26948188 pmcid: 5796640 doi: 10.1016/S2215-0366(15)00540-4
Feurer, M. et al. in Advances in Neural Information Processing Systems Vol. 28 (eds Cortes, C. et al.) 2962–2970 (Curran Associates, Inc., 2015).
Keefe, R. S. E., Eesley, C. E. & Poe, M. P. Defining a cognitive function decrement in schizophrenia. Biol. Psychiatry 57, 688–691 (2005).
pubmed: 15780858 doi: 10.1016/j.biopsych.2005.01.003
Woodberry, K. A. & Giuliano, A. J.,. & Seidman, L. J. Premorbid IQ in schizophrenia: a meta-analytic review. Am. J. Psychiatry 165, 579–587 (2008).
pubmed: 18413704 doi: 10.1176/appi.ajp.2008.07081242
Ipsen, N. B. & Hansen, L. K. Phase transition in PCA with missing data: Reduced signal-to-noise ratio, not sample size! In proceedings of machine learning research. Int. Machine Lean. Society (IMLS) 97, 5248–5260 (2019).
Nordentoft, M. et al. From research to practice: how OPUS treatment was accepted and implemented throughout Denmark. Early Interv. Psychiatry 9, 156–162 (2015).
pubmed: 24304658 doi: 10.1111/eip.12108
Pantelis, C. et al. Neurobiological markers of illness onset in psychosis and schizophrenia: the search for a moving target. Neuropsychol. Rev. 19, 385 (2009).
pubmed: 19728098 doi: 10.1007/s11065-009-9114-1
Doucet, G. E., Moser, D. A., Luber, M. J., Leibu, E. & Frangou, S. Baseline brain structural and functional predictors of clinical outcome in the early course of schizophrenia. Mol. Psychiatry https://doi.org/10.1038/s41380-018-0269-0 (2018).
Bak, N. & Hansen, L. K. Data driven estimation of imputation error—a strategy for imputation with a reject option. PLoS ONE 11, e0164464 (2016).
pubmed: 27723782 pmcid: 5056679 doi: 10.1371/journal.pone.0164464
Oldfield, R. C. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97–113 (1971).
doi: 10.1016/0028-3932(71)90067-4 pubmed: 5146491
Crespo-Facorro, B. et al. Caudate nucleus volume and its clinical and cognitive correlations in first episode schizophrenia. Schizophr. Res. 91, 87–96 (2007).
pubmed: 17306506 doi: 10.1016/j.schres.2006.12.015

Auteurs

Karen S Ambrosen (KS)

Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark. karen.marie.sandoe.ambrosen@regionh.dk.

Martin W Skjerbæk (MW)

Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark.

Jonathan Foldager (J)

Cognitive Systems, DTU Compute, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark.

Martin C Axelsen (MC)

Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark.
Cognitive Systems, DTU Compute, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark.

Nikolaj Bak (N)

H. Lundbeck A/S, Valby, Denmark.

Lars Arvastson (L)

H. Lundbeck A/S, Valby, Denmark.

Søren R Christensen (SR)

H. Lundbeck A/S, Valby, Denmark.

Louise B Johansen (LB)

Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark.
Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark.

Jayachandra M Raghava (JM)

Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark.
Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, University of Copenhagen, Glostrup, Denmark.

Bob Oranje (B)

Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark.
Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.

Egill Rostrup (E)

Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark.

Mette Ø Nielsen (MØ)

Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark.
Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.

Merete Osler (M)

Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospitals, Frederiksberg, Denmark.
Section for Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.

Birgitte Fagerlund (B)

Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark.
Department of Psychology, University of Copenhagen, Copenhagen, Denmark.

Christos Pantelis (C)

Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark.
Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, VIC, Australia.

Bruce J Kinon (BJ)

Lundbeck North America, Deerfield, IL, USA.

Birte Y Glenthøj (BY)

Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark.
Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.

Lars K Hansen (LK)

Cognitive Systems, DTU Compute, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark.

Bjørn H Ebdrup (BH)

Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark.
Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH