Spatial patterns of CTCF sites define the anatomy of TADs and their boundaries.

CTCF binding site clusters CTCF orientation patterns Chromatin architecture Loop extrusion TAD boundary conservation TADs

Journal

Genome biology
ISSN: 1474-760X
Titre abrégé: Genome Biol
Pays: England
ID NLM: 100960660

Informations de publication

Date de publication:
12 08 2020
Historique:
received: 20 02 2020
accepted: 14 07 2020
entrez: 13 8 2020
pubmed: 13 8 2020
medline: 9 7 2021
Statut: epublish

Résumé

Topologically associating domains (TADs) are genomic regions of self-interaction. Additionally, it is known that TAD boundaries are enriched in CTCF binding sites. In turn, CTCF sites are known to be asymmetric, whereby the convergent configuration of a pair of CTCF sites leads to the formation of a chromatin loop in vivo. However, to date, it has been unclear how to reconcile TAD structure with CTCF-based chromatin loops. We approach this problem by analysing CTCF binding site strengths and classifying clusters of CTCF sites along the genome on the basis of their relative orientation. Analysis of CTCF site orientation classes as a function of their spatial distribution along the human genome reveals that convergent CTCF site clusters are depleted while divergent CTCF clusters are enriched in the 5- to 100-kb range. We then analyse the distribution of CTCF binding sites as a function of TAD boundary conservation across seven primary human blood cell types. This reveals divergent CTCF site enrichment at TAD boundaries. Furthermore, convergent arrays of CTCF sites separate the left and right sections of TADs that harbour internal CTCF sites, resulting in unequal TAD 'halves'. The orientation-based CTCF binding site cluster classification that we present reconciles TAD boundaries and CTCF site clusters in a mechanistically elegant fashion. This model suggests that the emergent structure of nuclear chromatin in the form of TADs relies on the obligate alternation of divergent and convergent CTCF site clusters that occur at different length scales along the genome.

Sections du résumé

BACKGROUND
Topologically associating domains (TADs) are genomic regions of self-interaction. Additionally, it is known that TAD boundaries are enriched in CTCF binding sites. In turn, CTCF sites are known to be asymmetric, whereby the convergent configuration of a pair of CTCF sites leads to the formation of a chromatin loop in vivo. However, to date, it has been unclear how to reconcile TAD structure with CTCF-based chromatin loops.
RESULTS
We approach this problem by analysing CTCF binding site strengths and classifying clusters of CTCF sites along the genome on the basis of their relative orientation. Analysis of CTCF site orientation classes as a function of their spatial distribution along the human genome reveals that convergent CTCF site clusters are depleted while divergent CTCF clusters are enriched in the 5- to 100-kb range. We then analyse the distribution of CTCF binding sites as a function of TAD boundary conservation across seven primary human blood cell types. This reveals divergent CTCF site enrichment at TAD boundaries. Furthermore, convergent arrays of CTCF sites separate the left and right sections of TADs that harbour internal CTCF sites, resulting in unequal TAD 'halves'.
CONCLUSIONS
The orientation-based CTCF binding site cluster classification that we present reconciles TAD boundaries and CTCF site clusters in a mechanistically elegant fashion. This model suggests that the emergent structure of nuclear chromatin in the form of TADs relies on the obligate alternation of divergent and convergent CTCF site clusters that occur at different length scales along the genome.

Identifiants

pubmed: 32782014
doi: 10.1186/s13059-020-02108-x
pii: 10.1186/s13059-020-02108-x
pmc: PMC7422557
doi:

Substances chimiques

CCCTC-Binding Factor 0
CTCF protein, human 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Validation Study

Langues

eng

Sous-ensembles de citation

IM

Pagination

197

Références

Science. 2009 Oct 9;326(5950):289-93
pubmed: 19815776
Nat Rev Genet. 2014 Apr;15(4):234-46
pubmed: 24614316
Genome Biol. 2015 Aug 14;16:161
pubmed: 26268681
Science. 2019 Dec 13;366(6471):1345-1349
pubmed: 31780627
Cell Rep. 2015 Mar 3;10(8):1297-309
pubmed: 25732821
Genome Biol. 2020 Mar 23;21(1):75
pubmed: 32293525
Trends Genet. 2019 Jul;35(7):542-551
pubmed: 31130395
BMC Bioinformatics. 2019 Nov 8;20(1):560
pubmed: 31703553
Cell. 2008 Feb 8;132(3):422-33
pubmed: 18237772
Nucleic Acids Res. 2004 Jan 1;32(Database issue):D91-4
pubmed: 14681366
Nature. 2016 Feb 4;530(7588):113-6
pubmed: 26814966
Nature. 2019 Dec;576(7785):158-162
pubmed: 31776509
Science. 2019 Dec 13;366(6471):1338-1345
pubmed: 31753851
Front Genet. 2020 Mar 10;11:158
pubmed: 32211023
Genome Biol. 2020 Jan 7;21(1):5
pubmed: 31910870
Genome Biol. 2016 Jun 15;17(1):127
pubmed: 27306882
Sci Rep. 2019 Feb 26;9(1):2772
pubmed: 30809020
Cell. 2014 Dec 18;159(7):1665-80
pubmed: 25497547
Cell. 2015 Aug 13;162(4):900-10
pubmed: 26276636
Nature. 2017 Mar 23;543(7646):519-524
pubmed: 28273065
Cell Rep. 2016 May 31;15(9):2038-49
pubmed: 27210764
Nat Rev Genet. 2013 Jun;14(6):390-403
pubmed: 23657480
Mol Cell. 2017 Jun 1;66(5):711-720.e3
pubmed: 28529057
Nat Biotechnol. 2015 Feb;33(2):198-203
pubmed: 25580597
Genome Res. 2015 Apr;25(4):582-97
pubmed: 25752748
Nat Genet. 2015 Jun;47(6):598-606
pubmed: 25938943
PLoS Biol. 2004 Sep;2(9):E259
pubmed: 15309048
Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):E6456-65
pubmed: 26499245
Mol Cell. 2015 Nov 19;60(4):676-84
pubmed: 26527277
Cell. 2017 May 4;169(4):693-707.e14
pubmed: 28475897
Annu Rev Genet. 2001;35:673-745
pubmed: 11700297
Cell. 2016 Nov 17;167(5):1369-1384.e19
pubmed: 27863249
Nature. 2012 Sep 6;489(7414):57-74
pubmed: 22955616
Nature. 2012 Apr 11;485(7398):381-5
pubmed: 22495304
Nature. 2015 Jul 9;523(7559):240-4
pubmed: 26030525
Wiley Interdiscip Rev Dev Biol. 2016 Mar-Apr;5(2):169-85
pubmed: 26558551
Mol Cell. 2010 May 28;38(4):576-89
pubmed: 20513432
Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):E6697-E6706
pubmed: 29967174
Sci Adv. 2019 Apr 10;5(4):eaaw1668
pubmed: 30989119
Nat Commun. 2017 Sep 5;8(1):441
pubmed: 28874668
Proc Natl Acad Sci U S A. 2015 Jun 16;112(24):7542-7
pubmed: 26034287
Nucleic Acids Res. 2018 Feb 28;46(4):1648-1660
pubmed: 29140466
Cell. 2015 Aug 13;162(4):703-5
pubmed: 26276625
Nature. 2004 Jul 29;430(6999):573-8
pubmed: 15229615
Nature. 2008 Feb 14;451(7180):796-801
pubmed: 18235444
Curr Protoc Bioinformatics. 2014 Sep 08;47:11.12.1-34
pubmed: 25199790
Science. 2018 Apr 6;360(6384):102-105
pubmed: 29472443
Bioinformatics. 2020 Jan 1;36(1):311-316
pubmed: 31290943
Nature. 2012 Apr 11;485(7398):376-80
pubmed: 22495300
Nucleic Acids Res. 2012 Dec;40(22):11202-12
pubmed: 23074191
Genes Dev. 2012 Jan 1;26(1):11-24
pubmed: 22215806
Mol Cell. 2016 Jun 2;62(5):668-80
pubmed: 27259200
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Mar;83(3 Pt 2):036103
pubmed: 21517554
Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):996-1001
pubmed: 24335803
Nature. 2017 Apr 27;544(7651):503-507
pubmed: 28424523
Nat Cell Biol. 2019 May;21(5):568-578
pubmed: 31036938
Nature. 2012 Sep 6;489(7414):109-13
pubmed: 22955621
Nat Methods. 2012 Oct;9(10):999-1003
pubmed: 22941365

Auteurs

Luca Nanni (L)

Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy.

Stefano Ceri (S)

Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy.

Colin Logie (C)

Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science, Radboud University, PO box 9101, 6500 HG, Nijmegen, The Netherlands. c.logie@science.ru.nl.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH