Giant spin signals in chemically functionalized multiwall carbon nanotubes.
Journal
Science advances
ISSN: 2375-2548
Titre abrégé: Sci Adv
Pays: United States
ID NLM: 101653440
Informations de publication
Date de publication:
Jul 2020
Jul 2020
Historique:
received:
12
12
2019
accepted:
17
06
2020
entrez:
14
8
2020
pubmed:
14
8
2020
medline:
14
8
2020
Statut:
epublish
Résumé
Transporting quantum information such as the spin information over micrometric or even millimetric distances is a strong requirement for the next-generation electronic circuits such as low-voltage spin-logic devices. This crucial step of transportation remains delicate in nontopologically protected systems because of the volatile nature of spin states. Here, a beneficial combination of different phenomena is used to approach this sought-after milestone for the beyond-Complementary Metal Oxide Semiconductor (CMOS) technology roadmap. First, a strongly spin-polarized charge current is injected using highly spin-polarized hybridized states emerging at the complex ferromagnetic metal/molecule interfaces. Second, the spin information is brought toward the conducting inner shells of a multiwall carbon nanotube used as a confined nanoguide benefiting from both weak spin-orbit and hyperfine interactions. The spin information is finally electrically converted because of a strong magnetoresistive effect. The experimental results are also supported by calculations qualitatively revealing exceptional spin transport properties of this system.
Identifiants
pubmed: 32789172
doi: 10.1126/sciadv.aba5494
pii: aba5494
pmc: PMC7399653
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
eaba5494Informations de copyright
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Références
Phys Rev Lett. 2007 Oct 26;99(17):176602
pubmed: 17995355
ACS Nano. 2011 Jun 28;5(6):4927-34
pubmed: 21595426
Phys Rev Lett. 2004 Sep 10;93(11):117203
pubmed: 15447375
Phys Rev Lett. 2010 Oct 15;105(16):167202
pubmed: 21231003
Nat Mater. 2017 Apr 25;16(5):507-515
pubmed: 28439116
Phys Rev Lett. 2018 Sep 21;121(12):127703
pubmed: 30296144
Phys Rev Lett. 2011 Jul 1;107(1):016602
pubmed: 21797560
Nature. 2008 Oct 9;455(7214):778-81
pubmed: 18843364
Nature. 2013 Jan 24;493(7433):509-13
pubmed: 23344361
Chem Soc Rev. 2005 May;34(5):429-39
pubmed: 15852155
Sci Rep. 2016 Jan 20;6:19701
pubmed: 26786067
Phys Rev Lett. 2010 Aug 6;105(6):066601
pubmed: 20867994
Phys Rev B Condens Matter. 1988 Apr 1;37(10):5326-5335
pubmed: 9943714
Nat Commun. 2016 Aug 31;7:12668
pubmed: 27578395
Phys Rev Lett. 2015 May 22;114(20):206603
pubmed: 26047247
Nature. 2007 Jan 25;445(7126):410-3
pubmed: 17251975
Nat Commun. 2015 Apr 10;6:6766
pubmed: 25857650
Nat Nanotechnol. 2014 Oct;9(10):794-807
pubmed: 25286274
Science. 2016 Apr 22;352(6284):437-41
pubmed: 27102478
Nat Mater. 2005 Apr;4(4):335-9
pubmed: 15750597
Sci Adv. 2017 Jun 09;3(6):e1602297
pubmed: 28630901
Nano Lett. 2015 Dec 9;15(12):7921-6
pubmed: 26575946
Nat Commun. 2018 Jul 20;9(1):2869
pubmed: 30030444
Sci Rep. 2014 Aug 26;4:6146
pubmed: 25156685
Phys Rev Lett. 2018 Sep 21;121(12):127702
pubmed: 30296147
Nano Lett. 2016 Jun 8;16(6):3533-9
pubmed: 27210240
Nat Mater. 2012 Apr 23;11(5):382-90
pubmed: 22522638
Nat Nanotechnol. 2010 Apr;5(4):266-70
pubmed: 20190748
Science. 2011 May 27;332(6033):1062-4
pubmed: 21551029
Nat Nanotechnol. 2011 Mar;6(3):185-9
pubmed: 21336269