Turn-on chemiluminescence probes and dual-amplification of signal for detection of amyloid beta species in vivo.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
13 08 2020
13 08 2020
Historique:
received:
19
01
2020
accepted:
13
07
2020
entrez:
15
8
2020
pubmed:
15
8
2020
medline:
9
9
2020
Statut:
epublish
Résumé
Turn-on fluorescence imaging is routinely studied; however, turn-on chemiluminescence has been rarely explored for in vivo imaging. Herein, we report the design and validation of chemiluminescence probe ADLumin-1 as a turn-on probe for amyloid beta (Aβ) species. Two-photon imaging indicates that ADLumin-1 can efficiently cross the blood-brain barrier and provides excellent contrast for Aβ plaques and cerebral amyloid angiopathy. In vivo brain imaging shows that the chemiluminescence signal of ADLumin-1 from 5-month-old transgenic 5xFAD mice is 1.80-fold higher than that from the age-matched wild-type mice. Moreover, we demonstrate that it is feasible to further dually-amplify signal via chemiluminescence resonance energy transfer (DAS-CRET) using two non-conjugated smart probes (ADLumin-1 and CRANAD-3) in solutions, brain homogenates, and in vivo whole brain imaging. Our results show that DAS-CRET can provide a 2.25-fold margin between 5-month-old 5xFAD mice and wild type mice. We believe that our strategy could be extended to other aggregating-prone proteins.
Identifiants
pubmed: 32792510
doi: 10.1038/s41467-020-17783-4
pii: 10.1038/s41467-020-17783-4
pmc: PMC7426431
doi:
Substances chimiques
Amyloid beta-Peptides
0
Protein Aggregates
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
4052Subventions
Organisme : NIA NIH HHS
ID : R01 AG055413
Pays : United States
Organisme : NIA NIH HHS
ID : R21 AG059134
Pays : United States
Organisme : NIA NIH HHS
ID : R21 AG065826
Pays : United States
Références
Massoud, T. F. & Gambhir, S. S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev.17, 545–580 (2003).
pubmed: 12629038
Rao, J., Dragulescu-Andrasi, A. & Yao, H. Fluorescence imaging in vivo: recent advances. Curr. Opin. Biotechnol.18, 17–25 (2007).
pubmed: 17234399
Lakowicz, J. Principles of Fluorescence Spectroscopy (Plenum Publishing Corporation, 1999).
Rice, B. W. & Contag, C. H. The importance of being red. Nat. Biotechnol.27, 624–625 (2009).
pubmed: 19587667
Kobayashi, H., Ogawa, M., Alford, R., Choyke, P. L. & Urano, Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev.110, 2620–2640 (2010).
pubmed: 20000749
pmcid: 3241938
Ueno, T. & Nagano, T. Fluorescent probes for sensing and imaging. Nat. Methods8, 642–645 (2011).
pubmed: 21799499
Miao, Q. et al. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat. Biotechnol.35, 1102–1110 (2017).
pubmed: 29035373
Hananya, N. & Shabat, D. A glowing trajectory between bio- and chemiluminescence: from luciferin-based probes to triggerable dioxetanes. Angew. Chem. Int .Ed. Engl.56, 16454–16463 (2017).
pubmed: 28967167
Hananya, N. & Shabat, D. Recent advances and challenges in luminescent imaging: bright outlook for chemiluminescence of dioxetanes in water. ACS Cent. Sci.5, 949–959 (2019).
pubmed: 31263754
pmcid: 6598152
Suzuki, K. & Nagai, T. Recent progress in expanding the chemiluminescent toolbox for bioimaging. Curr. Opin. Biotechnol.48, 135–141 (2017).
pubmed: 28482221
Lee, D. et al. In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nat. Mater.6, 765–769 (2007).
pubmed: 17704780
Roda, A., Pasini, P., Mirasoli, M., Michelini, E. & Guardigli, M. Biotechnological applications of bioluminescence and chemiluminescence. Trends Biotechnol.22, 295–303 (2004).
pubmed: 15158059
Shuhendler, A. J., Pu, K., Cui, L., Uetrecht, J. P. & Rao, J. Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing. Nat. Biotechnol.32, 373–380 (2014).
pubmed: 24658645
pmcid: 4070437
Baumes, J. M. et al. Storable, thermally activated, near-infrared chemiluminescent dyes and dye-stained microparticles for optical imaging. Nat. Chem.2, 1025–1030 (2010).
pubmed: 21107365
pmcid: 3043620
Lee, I.-J. H. O., Yoo, D.-H., Khang, G.-S. & Lee, D.-W. Detection of hydrogen peroxide in vitro and in vivo using peroxalate chemiluminescent micelles. Bull. Korean Chem. Soc.32, 2187–2192 (2011).
Zhao, H. et al. Characterization of coelenterazine analogs for measurements of Renilla luciferase activity in live cells and living animals. Mol. Imaging3, 43–54 (2004).
pubmed: 15142411
Bronsart, L. L., Stokes, C. & Contag, C. H. Chemiluminescence imaging of superoxide anion detects beta-cell function and mass. PLoS ONE11, e0146601 (2016).
pubmed: 26752052
pmcid: 4709142
Selkoe, D. J. Resolving controversies on the path to Alzheimer’s therapeutics. Nat. Med.17, 1060–1065 (2011).
pubmed: 21900936
Nordberg, A. Molecular imaging in Alzheimer’s disease: new perspectives on biomarkers for early diagnosis and drug development. Alzheimers Res Ther.3, 34 (2011).
pubmed: 22136152
pmcid: 3308023
Hintersteiner, M. et al. In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe. Nat. Biotechnol.23, 577–583 (2005).
pubmed: 15834405
Skovronsky, D. M. et al. In vivo detection of amyloid plaques in a mouse model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA97, 7609–7614 (2000).
pubmed: 10861023
Nesterov, E. E. et al. In vivo optical imaging of amyloid aggregates in brain: design of fluorescent markers. Angew. Chem. Int. Ed.44, 5452–5456 (2005).
Higuchi, M. et al. 19F and 1H MRI detection of amyloid beta plaques in vivo. Nat. Neurosci.8, 527–533 (2005).
pubmed: 15768036
Bandara, N. et al. Evaluation of (64)Cu-based radiopharmaceuticals that target abeta peptide aggregates as diagnostic tools for Alzheimer’s disease. J. Am. Chem. Soc.139, 12550–12558 (2017).
pubmed: 28823165
pmcid: 5677763
Wadghiri, Y. Z. et al. Detection of Alzheimer’s amyloid in transgenic mice using magnetic resonance microimaging. Magn. Reson. Med.50, 293–302 (2003).
pubmed: 12876705
Bolognesi, M. L., Gandini, A., Prati, F. & Uliassi, E. From companion diagnostics to theranostics: a new avenue for Alzheimer’s disease? J. Med. Chem.59, 7759–7770 (2016).
pubmed: 27124551
Ran, C. et al. Design, synthesis, and testing of difluoroboron-derivatized curcumins as near-infrared probes for in vivo detection of amyloid-beta deposits. J. Am. Chem. Soc.131, 15257–15261 (2009).
pubmed: 19807070
pmcid: 2784241
Ran, C. & Moore, A. Spectral unmixing imaging of wavelength-responsive fluorescent probes: an application for the real-time report of amyloid Beta species in Alzheimer’s disease. Mol. Imaging Biol.14, 293–300 (2012).
pubmed: 21739354
pmcid: 3229962
Zhang, X. et al. Design and synthesis of curcumin analogues for in vivo fluorescence imaging and inhibiting copper-induced cross-linking of amyloid Beta species in Alzheimer’s disease. J. Am. Chem. Soc.135, 16397–16409 (2013).
pubmed: 24116384
pmcid: 3927838
Zhang, X. et al. Near-infrared fluorescence molecular imaging of amyloid beta species and monitoring therapy in animal models of Alzheimer’s disease. Proc. Natl Acad. Sci. USA112, 9734–9739 (2015).
pubmed: 26199414
Zhang, X. & Ran, C. Dual functional small molecule probes as fluorophore and ligand for misfolding proteins. Curr. Org. Chem.17, 580–593 (2013).
Jakob-Roetne, R. & Jacobsen, H. Alzheimer’s disease: from pathology to therapeutic approaches. Angew. Chem. Int Ed. Engl.48, 3030–3059 (2009).
pubmed: 19330877
Chang, W. M. et al. ANCA: a family of fluorescent probes that bind and stain amyloid plaques in human tissue. ACS Chem. Neurosci.2, 249–255 (2011).
pubmed: 21743829
pmcid: 3129977
Choi, S. R. et al. Preclinical properties of 18F-AV-45: a PET agent for Abeta plaques in the brain. J. Nucl. Med.50, 1887–1894 (2009).
pubmed: 19837759
pmcid: 3065020
Li, Q. et al. Solid-phase synthesis of styryl dyes and their application as amyloid sensors. Angew. Chem. Int. Ed. 43, 6331–6335 (2004).
Cui, M., Ono, M., Kimura, H., Liu, B. & Saji, H. Synthesis and structure-affinity relationships of novel dibenzylideneacetone derivatives as probes for beta-amyloid plaques. J. Med. Chem.54, 2225–2240 (2011).
pubmed: 21417461
Ono, M., Watanabe, H., Kimura, H. & Saji, H. BODIPY-based molecular probe for imaging of cerebral β-amyloid plaques. ACS Chem. Neurosci.3, 319–324 (2012).
pubmed: 22860198
pmcid: 3369805
Cao, K. et al. Aminonaphthlanene 2-cyanoacrylate (ANCA) probes fluorescently discriminate between amyloid-beta and prion plaques in brain. J. Am. Chem. Soc.134, 17338–17341 (2012).
Cui, M. et al. Smart near-infrared fluorescence probes with donor-acceptor structure for in vivo detection of beta-amyloid deposits. J. Am. Chem. Soc.136, 3388–3394 (2014).
pubmed: 24555862
Lv, G., Sun, A., Wei, P., Zhang, N., Lan, H. & Yi, T. A spiropyran-based fluorescent probe for the specific detection of β-amyloid peptide oligomers in Alzheimer’s disease. Chem. Commun. (Camb.)52, 8865–8868 (2016).
Fu, W. et al. Rational design of near-infrared aggregation-induced-emission-active probes: in situ mapping of amyloid-beta plaques with ultrasensitivity and high-fidelity. J. Am. Chem. Soc.141, 3171–3177 (2019).
pubmed: 30632737
Teoh, C. L. et al. Chemical fluorescent probe for detection of abeta oligomers. J. Am. Chem. Soc.137, 13503–13509 (2015).
pubmed: 26218347
pmcid: 4756585
Shin, J. et al. Harnessing intramolecular rotation to enhance two-photon imaging of abeta plaques through minimizing background fluorescence. Angew. Chem. Int. Ed. Engl.58, 5648–5652 (2019).
pubmed: 30809896
Sedgwick, A. C. et al. An ESIPT probe for the ratiometric imaging of peroxynitrite facilitated by binding to abeta-aggregates. J. Am. Chem. Soc.140, 14267–14271 (2018).
pubmed: 30277762
Cao, K. J. & Yang, J. Translational opportunities for amyloid-targeting fluorophores. Chem. Commun. (Camb.)54, 9107–9118 (2018).
Maeztu, R., Tardajos, G. & Gonzalez-Gaitano, G. Natural cyclodextrins as efficient boosters of the chemiluminescence of luminol and isoluminol: exploration of potential applications. J. Phys. Chem. B114, 2798–2806 (2010).
pubmed: 20131859
Green, O. et al. Near-infrared dioxetane luminophores with direct chemiluminescence emission mode. J. Am. Chem. Soc.139, 13243–13248 (2017).
pubmed: 28853880
Son, S. et al. Chemiluminescent probe for the in vitro and in vivo imaging of cancers over-expressing NQO1. Angew. Chem. Int. Ed. Engl.58, 1739–1743 (2019).
pubmed: 30561862
Roth-Konforti, M. et al. Ultrasensitive detection of Salmonella and Listeria monocytogenes by small-molecule chemiluminescence probes. Angew. Chem. Int. Ed. Engl.58, 10361–10367 (2019).
pubmed: 31233265
Faulkner, K. & Fridovich, I. Luminol and lucigenin as detectors for O2. Free Radic. Biol. Med.15, 447–451 (1993).
pubmed: 8225026
Teranishi, K. Luminescence of imidazo[1,2-a]pyrazin-3(7H)-one compounds. Bioorg. Chem.35, 82–111 (2007).
pubmed: 17007903
Krzyminski, K. et al. Chemiluminogenic features of 10-methyl-9-(phenoxycarbonyl)acridinium trifluoromethanesulfonates alkyl substituted at the benzene ring in aqueous media. J. Org. Chem.76, 1072–1085 (2011).
pubmed: 21247186
Barondeau, D. P., Putnam, C. D., Kassmann, C. J., Tainer, J. A. & Getzoff, E. D. Mechanism and energetics of green fluorescent protein chromophore synthesis revealed by trapped intermediate structures. Proc. Natl Acad. Sci. USA100, 12111–12116 (2003).
pubmed: 14523232
Lambrechts, D. et al. A causal relation between bioluminescence and oxygen to quantify the cell niche. PLoS ONE9, e97572 (2014).
pubmed: 24840204
pmcid: 4026314
Oakley, H. et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J. Neurosci.26, 10129–10140 (2006).
pubmed: 17021169
pmcid: 6674618
Yang, J., Yang, J., Li, Y., Xu, Y. & Ran, C. Near-infrared fluorescence ocular imaging (NIRFOI) of Alzheimer’s disease. Mol. Imaging Biol.21, 35–43 (2019).
pubmed: 29802553
Huang, X., Li, L., Qian, H., Dong, C. & Ren, J. A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Angew. Chem. Int. Ed. Engl.45, 5140–5143 (2006).
pubmed: 16826612
Li, P. et al. A new polymer nanoprobe based on chemiluminescence resonance energy transfer for ultrasensitive imaging of intrinsic superoxide anion in mice. J. Am. Chem. Soc.138, 2893–2896 (2016).
pubmed: 26908223
Zhang, N., Francis, K. P., Prakash, A. & Ansaldi, D. Enhanced detection of myeloperoxidase activity in deep tissues through luminescent excitation of near-infrared nanoparticles. Nat. Med.19, 500–505 (2013).
pubmed: 23455711
Sapsford, K. E., Berti, L. & Medintz, I. L. Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. Angew. Chem. Int. Ed. Engl.45, 4562–4589 (2006).
pubmed: 16819760
Ran, C., Zhao, W., Moir, R. D. & Moore, A. Non-conjugated small molecule FRET for differentiating monomers from higher molecular weight amyloid beta species. PLoS ONE6, e19362 (2011).
pubmed: 21559413
pmcid: 3084834
Su, W., Du, M., Lin, F., Zhang, C. & Chen, T. Quantitative FRET measurement based on spectral unmixing of donor, acceptor and spontaneous excitation-emission spectra. J. Biophotonics12, e201800314 (2019).
pubmed: 30414249
Ducros, M. et al. Spectral unmixing: analysis of performance in the olfactory bulb in vivo. PLoS ONE4, e4418 (2009).
pubmed: 19198655
pmcid: 2635473
Gandhi, J. et al. Protein misfolding and aggregation in neurodegenerative diseases: a review of pathogeneses, novel detection strategies, and potential therapeutics. Rev. Neurosci.30, 339–358 (2019).
pubmed: 30742586
Zhou, K. et al. Environment-sensitive near-infrared probe for fluorescent discrimination of abeta and tau fibrils in AD brain. J. Med. Chem.62, 6694–6704 (2019).
pubmed: 31274302
Walker, A. S., Rablen, P. R. & Schepartz, A. Rotamer-restricted fluorogenicity of the bis-arsenical ReAsH. J. Am. Chem. Soc.138, 7143–7150 (2016).
pubmed: 27163487
pmcid: 5381806
Grabowski, Z. R., Rotkiewicz, K. & Rettig, W. Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem. Rev.103, 3899–4032 (2003).
pubmed: 14531716
Arnold, S. E. et al. Olfactory epithelium amyloid-beta and paired helical filament-tau pathology in Alzheimer disease. Ann. Neurol.67, 462–469 (2010).
pubmed: 20437581
pmcid: 2864948
Kim, Y. H. et al. Amyloid beta in nasal secretions may be a potential biomarker of Alzheimer’s disease. Sci. Rep.9, 4966 (2019).
pubmed: 30899050
pmcid: 6428828
Mostany, R. & Portera-Cailliau, C. A craniotomy surgery procedure for chronic brain imaging. J. Vis. Exp.12, e680 (2008).