Antiosteoarthritic effect of Punica granatum L. peel extract on collagenase induced osteoarthritis rat by modulation of COL-2, MMP-3, and COX-2 expression.

articular cartilage collagen nonsteroidal antiinflammatory drug osteoarthritis proteoglycan

Journal

Environmental toxicology
ISSN: 1522-7278
Titre abrégé: Environ Toxicol
Pays: United States
ID NLM: 100885357

Informations de publication

Date de publication:
Jan 2021
Historique:
revised: 14 06 2020
received: 20 08 2019
accepted: 11 07 2020
medline: 15 8 2020
pubmed: 15 8 2020
entrez: 15 8 2020
Statut: ppublish

Résumé

Osteoarthritis (OA) is a chronic degenerative and musculoskeletal disorder. The toxicity associated with nonsteroidal antiinflammatory drugs (NSAIDs) limits its use in the management of OA. To ameliorate these toxicities, natural antioxidants can be used as substitutes for the management of OA. Therefore, this study is aimed to investigate the prophylactic mechanisms of Punica granatum L. peel (PGP) in collagenase-induced OA rat compared with indomethacin. OA was induced in female Sprague Dawley rats by intraarticular injection of collagenase type-II and treated with PGP (250 and 500 mg/kg body wt) and a positive control (PC) indomethacin (3 mg/kg body wt). The results demonstrated that PGP reduced the collagenase induced OA as compared with indomethacin treated group through reducing blood ALP (P < .001) and significantly (P < .001) inhibited cartilage erosion as indicated in histological slides with retention of collagen and proteoglycan content. Quantitative real-time PCR analysis revealed the considerable (P < .05) upregulation in the expression of COL-2 gene and downregulation of MMP-3 and COX-2 genes in the PGP treated group. The high phenolic content (633 ± 1.16 mg/GAE) and flavonoid content (420.3 ± 2.14 mg/RE) contribute to the strong antioxidant activity with IC

Identifiants

pubmed: 32794641
doi: 10.1002/tox.23005
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5-15

Informations de copyright

© 2020 Wiley Periodicals LLC.

Références

Berenbaum F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthr Cartilage. 2013;21:16-21.
Pelletier JP, Martel-Pelletier J, Abramson SB. Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets. Arthritis Rheum. 2001;44(6):1237-1247.
Karsdal MA, Leeming DJ, Dam EB, et al. Should subchondral bone turnover be targeted when treating osteoarthritis? Osteoarthr Cartilage. 2008;16(6):638-646.
Arden N, Nevitt MC. Osteoarthritis: epidemiology. Best Pract Res Clin Rheumatol. 2006;20:3-25.
Blair-Levy JM, Watts CE, Fiorientino NM, Dimitriadis EK, Marini JC, Lipsky PE. A type I collagen defect leads to rapidly progressive osteoarthritis in a mouse model. Arthritis Rheum. 2008;58(4):1096-1106.
Tortorella MD, Liu RQ, Burn T, Newton RC, Arner E. Characterization of human aggrecanase 2 (ADAM-TS5): substrate specificity studies and comparison with aggrecanase 1 (ADAM-TS4). Matrix Biol. 2002;21(6):499-511.
Little CB, Hughes CE, Curtis CL, et al. Matrix metalloproteinases are involved in C-terminal and interglobular domain processing of cartilage aggrecan in late stage cartilage degradation. Matrix Biol. 2002;21(3):271-288.
Parks WC, Wilson CL, López-Boado YS. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol. 2004;4(8):617-629.
Pelletier JP, Martel-Pelletier J, Rannou F, Cooper C. Efficacy and safety of oral NSAIDs and analgesics in the management of osteoarthritis: evidence from real-life setting trials and surveys. Semin Arthritis Rheum. 2016;45:S22-S27.
Hauser RA. The acceleration of articular cartilage degeneration in osteoarthritis by nonsteroidal anti-inflammatory drugs. J Prolo. 2010;2(1):305-322.
Vane JR, Mitchell JA, Appleton I, et al. Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proc Natl Acad Sci. 1994;91(6):2046-2050.
Rocca B, FitzGerald GA. Cyclooxygenases and prostaglandins: shaping up the immune response. Int Immunopharmacol. 2002;2:603-630.
Palaniswamy R. A Guide to Medicinal Plants of Asian Origin and Culture. Newbury, UK: CPL Press; 2003.
Bhowmik D, Gopinath H, Kumar BP, Kumar K. Medicinal uses of Punica granatum and its health benefits. J Pharmacog Phytochem. 2013;1(5):28-35.
Rahmani AH, Alsahli MA, Almatroodi SA. Active constituents of pomegranates (Punica granatum) as potential candidates in the management of health through modulation of biological activities. Pharm J. 2017;9(5):689-695.
Ghoochani N, Karandish M, Mowla K, Haghighizadeh MH, Khorami M, Jalali MT. The effects of pomegranate juice on Proinflammatory cytokines and physical function in patients with knee osteoarthritis. Jentashapir J Health Res. 2015;6:e26558.
Haseeb A, Khan NM, Ashruf OS, Haqqi TM. A polyphenol-rich pomegranate fruit extract suppresses NF-κB and IL-6 expression by blocking the activation of IKKβ and NIK in primary human chondrocytes. Phytother Res. 2017;31(5):778-782.
Rafraf M, Hemmati S, Jafarabadi MA, Moghaddam A, Haghighian MK. Pomegranate (Punica granatum L.) Peel Hydroalcoholic extract supplementation reduces pain and improves clinical symptoms of knee osteoarthritis: a randomized double-blind placebo controlled study. Iran Red Crescent Med J. 2017;19(1):e38577.
Gil MI, Tomás-Barberán FA, Hess-Pierce B, et al. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J Agric Food Chem. 2000;48(10):4581-4589.
Faria A, Calhau C. The bioactivity of pomegranate: impact on health and disease. Crit Rev Food Sci Nutr. 2011;51(7):626-634.
Zarfeshany A, Asgary S, Javanmard SH. Potent health effects of pomegranate. Adv Biomed Res. 2014;3:100-108.
Rahimi HR, Arastoo M, Ostad SN. A comprehensive review of Punica granatum (pomegranate) properties in toxicological, pharmacological, cellular and molecular biology researches. Iran J Pharma Res. 2012;11(2):385.
Iqbal E, Salim KA, Lim LB. Phytochemical screening, total phenolics and antioxidant activities of bark and leaf extracts of Goniothalamus velutinus (airy shaw) from Brunei Darussalam. J King Saud Univ Sci. 2015;27(3):224-232.
Christhudas IN, Kumar PP, Sunil C, et al. In vitro studies on α-glucosidase inhibition, antioxidant and free radical scavenging activities of Hedyotis biflora L. Food Chem. 2013;138(2-3):1689-1695.
Sultana B, Anwar F, Przybylski R. Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. Trees. Food Chem. 2007;104(3):1106-1114.
Karadag A, Ozcelik B, Saner SS. Review of methods to determine antioxidant capacities. Food Anal Method. 2009;2(1):41-60.
Nirmal P, Koppikar S, Bhondave P, et al. Influence of six medicinal herbs on collagenase-induced osteoarthritis in rats. Am J Chin Med. 2013;41(06):1407-1425.
Vogel B, Siebert H, Hofmann U, Frantz S. Determination of collagen content within picrosirius red stained paraffin-embedded tissue sections using fluorescence microscopy. MethodsX. 2015;2:124-134.
Mankin HJ, Lippiello L. The glycosaminoglycans of normal and arthritic cartilage. J Clin Invest. 1971;50(8):1712-1719.
Edwards CA, O'Brien W Jr. Modified assay for determination of hydroxyproline in a tissue hydrolyzate. Clin Chim Acta. 1980;104(2):161-167.
Farndale RW, Buttle DJ, Barrett BAJ. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta. 1986;883:173-177.
Dixit P, Chand K, Khan MP, et al. Phytoceramides and acylated phytosterol glucosides from Pterospermum acerifolium Willd. Seed coat and their osteogenic activity. Phytochemistry. 2012;81:117-125.
Barathikannan K, Venkatadri B, Khusro A, et al. Chemical analysis of Punica granatum fruit peel and its in vitro and in vivo biological properties. BMC Complement Altern Med. 2016;16(1):264-276.
Gautam RK, Sharma S, Sharma K, Gupta G. Evaluation of Antiarthritic activity of butanol fraction of Punica granatum Linn. Rind extract against Freund's complete adjuvant-induced arthritis in rats. Toxicol Oncol. 2018;37(1):53-62.
Asiri FA, Zaki MSA, Al-Nashar EM, Waris A, Abdulsamad MR. Possible prevention of cartilage damage in rat knee osteoarthritis by howthorn (aronia) treatment: histological and immunohistochemical studies. J Biochem Pharm Res. 2014;2:57-63.
Vander Kraan PM, Vitters EL, Van Beuningen HM, Van De Putte LB. Vanden Berg WB. Degenerative knee joint lesions in mice after a single intra-articular collagenase injection. A new model of osteoarthritis. Int J Exp Pathol. 1990;71(1):19.
Yeh TT, Wen ZH, Lee HS, et al. Intra-articular injection of collagenase induced experimental osteoarthritis of the lumbar facet joint in rats. Eur Spine J. 2008;17(5):734-742.
Gögebakan B, İzmirli M, Okuyan HM, Ataç L. Biomarkers for Early Diagnosis of Osteoarthritis. Osteoarthritis. SM dbooks. 2016. http://www.smgebooks.com/osteoarthritis/chapters/OAS-16-06.pdf
Bessone F. Non-steroidal anti-inflammatory drugs: What is the actual risk of liver damage?. World J Gastroenterol. 2010;16(45):5651.
Nirmal PS, Jagtap SD, Narkhede AN, Nagarkar BE, Harsulkar AM. New herbal composition (OA-F2) protects cartilage degeneration in a rat model of collagenase-induced osteoarthritis. BMC Complement Altern Med. 2017;17(1):6.
Tsushima H, Okazaki K, Hayashida M, Ushijima T, Iwamoto Y. CCAAT/enhancer binding protein β regulates expression of matrix metalloproteinase-3 in arthritis. Ann Rheum Dis. 2012;71(1):99-107.
Huh JE, Baek YH, Lee JD, Choi DY, Park DS. Therapeutic effect of Siegesbeckia pubescens on cartilage protection in a rabbit collagenase-induced model of osteoarthritis. J Pharmacol Sci. 2008;107(3):317-328.
Blom AB, VanLent PL, Libregts S, et al. Crucial role of macrophages in matrix metalloproteinase-mediated cartilage destruction during experimental osteoarthritis: involvement of matrix metalloproteinase 3. Arthritis Rheum. 2007;56(1):147-157.
Youn J, Lee KH, Won J, et al. Beneficial effects of rosmarinic acid on suppression of collagen induced arthritis. J Rheum. 2003;30(6):1203-1207.

Auteurs

Neelam Shivnath (N)

Molecular Endocrinology Lab, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, India.

Vineeta Rawat (V)

Molecular Endocrinology Lab, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, India.

Sahabjada Siddiqui (S)

Molecular Endocrinology Lab, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, India.
Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India.

Sushma Verma (S)

Department of Personalized and Molecular Medicine, Era's Lucknow Medical College & Hospital, Era University, Lucknow, Uttar Pradesh, India.

Pragya Gupta (P)

Molecular Endocrinology Lab, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, India.

Juhi Rais (J)

Molecular Endocrinology Lab, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, India.

Mohd Sajid Khan (MS)

Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India.
Department of Biochemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.

Md Arshad (M)

Molecular Endocrinology Lab, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, India.
Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.

Classifications MeSH