Single shot multispectral multidimensional imaging using chaotic waves.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
17 Aug 2020
17 Aug 2020
Historique:
received:
14
02
2020
accepted:
24
07
2020
entrez:
19
8
2020
pubmed:
19
8
2020
medline:
19
8
2020
Statut:
epublish
Résumé
Multispectral imaging technology is a valuable scientific tool for various applications in astronomy, remote sensing, molecular fingerprinting, and fluorescence imaging. In this study, we demonstrate a single camera shot, lensless, interferenceless, motionless, non-scanning, space, spectrum, and time resolved five-dimensional incoherent imaging technique using tailored chaotic waves with quasi-random intensity and phase distributions. Chaotic waves can distinctly encode spatial and spectral information of an object in single self-interference intensity distribution. In this study, a tailored chaotic wave with a nearly pure phase function and lowest correlation noise is generated using a quasi-random array of pinholes. A unique sequence of signal processing techniques is applied to extract all possible spatial and spectral channels with the least entropy. The depth-wavelength reciprocity is exploited to see colour from depth and depth from colour and the physics of beam propagation is exploited to see at one depth by calibrating at another.
Identifiants
pubmed: 32807816
doi: 10.1038/s41598-020-70849-7
pii: 10.1038/s41598-020-70849-7
pmc: PMC7431426
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
13902Subventions
Organisme : North Atlantic Treaty Organization
ID : SPS-985048
Références
Carlson, R. W. et al. Galileo infrared imaging spectroscopy measurements at Venus. Science 253, 1541–1548 (1991).
doi: 10.1126/science.253.5027.1541
Wilson, J. W., Robles, F. E., Deb, S., Warren, W. S. & Fischer, M. C. Comparison of pump-probe and hyperspectral imaging in unstained histology sections of pigmented lesions. Biomed. Opt. Express 8, 3882–3890 (2017).
doi: 10.1364/BOE.8.003882
Rosen, J. & Brooker, G. Non-scanning motionless fluorescence three-dimensional holographic microscopy. Nat. Photonics 2, 190–195 (2008).
doi: 10.1038/nphoton.2007.300
Palukuru, U. P. et al. Near infrared spectroscopic imaging assessment of cartilage composition: Validation with mid infrared imaging spectroscopy. Anal. Chim. Acta 926, 79–87 (2016).
doi: 10.1016/j.aca.2016.04.031
Plaza, A., Plaza, J., Paz, A. & Sanchez, S. Parallel hyperspectral image and signal processing [applications corner]. IEEE Signal Process. Mag. 28, 119–126 (2011).
doi: 10.1109/MSP.2011.940409
Khan, M. J., Khan, H. S., Yousaf, A., Khurshid, K. & Abbas, A. Modern trends in hyperspectral image analysis: A review. IEEE Access 6, 14118–14129 (2018).
doi: 10.1109/ACCESS.2018.2812999
Renner, E. Pinhole Photography From Historic Technique to Digital Application (Elsevier Inc., Burlington, 2009).
Kirkpatrick, P. & Baez, A. V. Formation of optical images by X-rays. J. Opt. Soc. Am. 38, 766–774 (1948).
doi: 10.1364/JOSA.38.000766
Paix, D. Pinhole imaging of gamma rays. Phys. Med. Biol. 12, 489–500 (1967).
doi: 10.1088/0031-9155/12/4/004
Young, M. Pinhole optics. Appl. Opt. 10, 2763–2767 (1971).
doi: 10.1364/AO.10.002763
Holt, S. S. Temporal X-ray astronomy with a pinhole camera. Astrophys. Space Sci. 42, 123–141 (1976).
doi: 10.1007/BF00645534
Duan, J., Macey, D. J., Pareek, P. N. & Brezovich, I. A. Real-time monitoring and verification of in vivo high dose rate brachytherapy using a pinhole camera. Med. Phys. 28, 167–173 (2001).
doi: 10.1118/1.1339882
Eisebitt, S. et al. Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 432, 885–888 (2004).
doi: 10.1038/nature03139
Serre, D., Deba, P. & Koechlin, L. Fresnel Interferometric Imager: Ground-based prototype. Appl. Opt. 48, 2811–2820 (2009).
doi: 10.1364/AO.48.002811
Kipp, L. et al. Sharper images by focusing soft X-rays with photon sieve. Nature 414, 184–188 (2001).
doi: 10.1038/35102526
Dicke, R. H. Scatter-hole cameras for X-rays and gamma rays. Astrophys. J. 153, L101–L106 (1968).
doi: 10.1086/180230
Trussell, H. J. Processing of X-ray images. Proc. IEEE 69, 615–627 (1981).
doi: 10.1109/PROC.1981.12029
Kalenkov, S. G., Kalenkov, G. S. & Shtanko, A. E. Hyperspectral holography: An alternative application of the Fourier transform spectrometer. J. Opt. Soc. Am. B 34, B49–B55 (2017).
doi: 10.1364/JOSAB.34.000B49
Tan, J., Ma, Y., Rueda, H., Baron, D. & Arce, G. R. Compressive hyperspectral imaging via approximate message passing. IEEE J. Sel. Top. Signal Process. 10, 389–401 (2016).
doi: 10.1109/JSTSP.2015.2500190
Greenbaum, A. et al. Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy. Nat. Methods 9, 889–895 (2012).
doi: 10.1038/nmeth.2114
Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).
doi: 10.1126/science.aat8084
Vijayakumar, A. & Rosen, J. Interferenceless coded aperture correlation holography—A new technique for recording incoherent digital holograms without two-wave interference. Opt. Express 25, 13883–13896 (2017).
doi: 10.1364/OE.25.013883
Katz, O., Heidmann, P., Fink, M. & Gigan, S. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics 8, 784–790 (2014).
doi: 10.1038/nphoton.2014.189
Antipa, N. et al. DiffuserCam: Lensless single-exposure 3D imaging. Optica 5, 1–9 (2018).
doi: 10.1364/OPTICA.5.000001
Sahoo, S. K., Tang, D. & Dang, C. Single-shot multispectral imaging with a monochromatic camera. Optica 4, 1209–1213 (2017).
doi: 10.1364/OPTICA.4.001209
Wagadarikar, A., John, R., Willett, R. & Brady, D. Single disperser design for coded aperture snapshot spectral imaging. Appl. Opt. 47, B44–B51 (2008).
doi: 10.1364/AO.47.000B44
Cao, X. et al. Computational snapshot multispectral cameras: toward dynamic capture of the spectral world. IEEE Signal Process. Mag. 33, 95–108 (2016).
doi: 10.1109/MSP.2016.2582378
Correa, C. V., Arguello, H. & Arce, G. R. Spatiotemporal blue noise coded aperture design for multi-shot compressive spectral imaging. J. Opt. Soc. Am. A 33, 2312–2322 (2016).
doi: 10.1364/JOSAA.33.002312
Gehm, M. E., John, R., Brady, D. J., Willett, R. M. & Schulz, T. J. Single-shot compressive spectral imaging with a dual-disperser architecture. Opt. Express 15, 14013–14027 (2007).
doi: 10.1364/OE.15.014013
Vijayakumar, A. & Rosen, J. Spectrum and space resolved 4D imaging by coded aperture correlation holography (COACH) with diffractive objective lens. Opt. Lett. 42, 947–950 (2017).
doi: 10.1364/OL.42.000947
Hara, T., Tahara, T., Ichihashi, Y., Oi, R. & Ito, T. Multiwavelength-multiplexed phase-shifting incoherent color digital holography. Opt. Express 28, 10078–10089 (2020).
doi: 10.1364/OE.383692
Tahara, T., Mori, R., Kikunaga, S., Arai, Y. & Takaki, Y. Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms. Opt. Lett. 40, 2810–2813 (2015).
doi: 10.1364/OL.40.002810
Tahara, T., Mori, R., Arai, Y. & Takaki, Y. Four-step phase-shifting digital holography simultaneously sensing dual-wavelength information using a monochromatic image sensor. J. Opt. 17, 125707 (2015).
doi: 10.1088/2040-8978/17/12/125707
Anand, V., Katkus, T. & Juodkazis, S. Randomly multiplexed diffractive lens and axicon for spatial and spectral imaging. Micromachines 11, 437 (2020).
doi: 10.3390/mi11040437
Dainty, J. C. Laser Speckle and Related Phenomena Vol. 9 (Springer Science & Business Media, New York, 2013).
Rai, M. R., Vijayakumar, A. & Rosen, J. Non-linear Adaptive Three-Dimensional Imaging with interferenceless coded aperture correlation holography (I-COACH). Opt. Express 26, 18143–18154 (2018).
doi: 10.1364/OE.26.018143
Anand, V., Bhattacharya, S. & Rosen, J. Spatial multiplexing technique for improving dynamic range of speckle correlation based optical lever. Sci. Rep. 9, 16035 (2020).
doi: 10.1038/s41598-019-52394-0
Rai, M. R., Vijayakumar, A. & Rosen, J. Extending the field of view by a scattering window in an I-COACH system. Opt. Lett. 43, 1043–1046 (2018).
doi: 10.1364/OL.43.001043
Jang, M., Horie, Y., Shibukawa, A., Brake, J., Liu, Y., Kamali, S. M., Arbabi, A., Ruan, H., Faraon, A. & Yang, C. Wavefront shaping with disorder-engineered metasurfaces. Nat. Photon. 12(2), 84–90 (2018).
doi: 10.1038/s41566-017-0078-z
Kumar, M., Vijayakumar, A., Rosen, J. & Matoba, O. Interferenceless coded aperture correlation holography with synthetic point spread holograms. Appl. Opt. 59 (2020) (Accepted).