Coronary artery bypass grafting and perioperative stroke: imaging of atherosclerotic plaques in the ascending aorta with ungated high-pitch CT-angiography.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
17 08 2020
17 08 2020
Historique:
received:
29
04
2020
accepted:
03
08
2020
entrez:
19
8
2020
pubmed:
19
8
2020
medline:
15
12
2020
Statut:
epublish
Résumé
Perioperative stroke is a devastating complication after coronary artery bypass graft (CABG) surgery, with atherosclerosis of the ascending aorta as important risk factor. During surgical manipulation, detachment of plaques can lead to consecutive embolization into brain-supplying arteries. High-pitch computed tomography angiography (HP-CTA) represents a non-invasive imaging modality, which provides the opportunity for comprehensive imaging of the ascending aorta, including plaque detection and advanced characterization. In our present retrospective study on 719 individuals, who had undergone HP-CTA within 6 months prior to CABG, atherosclerotic disease of the ascending aorta was evaluated with respect to perioperative stroke rates. For image analysis, the ascending aorta was divided into a proximal and distal part, consisting of four segments, and evaluated for presence and distribution of calcified and mixed plaques. All patients with perioperative stroke presented with atherosclerotic disease of the ascending aorta. The stroke rate was significantly associated with the presence and extent of atherosclerotic disease. Patients burdened with mixed plaques presented with significantly higher perioperative stroke rates. This study demonstrates that HP-CTA allows accurate evaluation of plaque extent and composition in the ascending aorta, and therefore may improve risk stratification of stroke prior to CABG.
Identifiants
pubmed: 32807858
doi: 10.1038/s41598-020-70830-4
pii: 10.1038/s41598-020-70830-4
pmc: PMC7431556
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
13909Références
Stamou, S. C. et al. Stroke after coronary artery bypass: incidence, predictors, and clinical outcome. Stroke 32, 1508–1513 (2001).
doi: 10.1161/01.STR.32.7.1508
Tarakji, K. G., Sabik, J. F., Bhudia, S. K., Batizy, L. H. & Blackstone, E. H. Temporal onset, risk factors, and outcomes associated with stroke after coronary artery bypass grafting. JAMA 305, 381–390 (2011).
doi: 10.1001/jama.2011.37
Dávila-Román, V. G. et al. Atherosclerosis of the ascending aorta. Prevalence and role as an independent predictor of cerebrovascular events in cardiac patients. Stroke 25, 2010–2016 (1994).
doi: 10.1161/01.STR.25.10.2010
Hogue, C. W., Murphy, S. F., Schechtman, K. B. & Dávila-Román, V. G. Risk factors for early or delayed stroke after cardiac surgery. Circulation 100, 642–647 (1999).
doi: 10.1161/01.CIR.100.6.642
Amarenco, P. et al. The prevalence of ulcerated plaques in the aortic arch in patients with stroke. N. Engl. J. Med. 326, 221–225 (1992).
doi: 10.1056/NEJM199201233260402
Kapetanakis, E. I. et al. The impact of aortic manipulation on neurologic outcomes after coronary artery bypass surgery: a risk-adjusted study. Ann. Thorac. Surg. 78, 1564–1571 (2004).
doi: 10.1016/j.athoracsur.2004.05.019
Virmani, R., Burke, A. P., Farb, A. & Kolodgie, F. D. Pathology of the vulnerable plaque. J. Am. Coll. Cardiol. 47, C13–C18 (2006).
doi: 10.1016/j.jacc.2005.10.065
Mann, J. M. & Davies, M. J. Vulnerable plaque. Relation of characteristics to degree of stenosis in human coronary arteries. Circulation 94, 928–931 (1996).
doi: 10.1161/01.CIR.94.5.928
Park, K.-H. et al. Clinical impact of computerised tomographic angiography performed for preoperative evaluation before coronary artery bypass grafting. Eur. J. Cardiothorac. Surg. 37, 1346–1352 (2010).
doi: 10.1016/j.ejcts.2009.12.040
Nakamura, M. et al. Does intensive management of cerebral hemodynamics and atheromatous aorta reduce stroke after coronary artery surgery?. Ann. Thorac. Surg. 85, 513–519 (2008).
doi: 10.1016/j.athoracsur.2007.08.056
Karlo, C. et al. High-pitch dual-source CT angiography of the aortic valve-aortic root complex without ECG-synchronization. Eur. Radiol. 21, 205–212 (2011).
doi: 10.1007/s00330-010-1907-3
Beeres, M. et al. High-pitch dual-source CT angiography of the whole aorta without ECG synchronisation: initial experience. Eur. Radiol. 22, 129–137 (2012).
doi: 10.1007/s00330-011-2257-5
Apfaltrer, P. et al. Radiation dose and image quality at high-pitch CT angiography of the aorta: intraindividual and interindividual comparisons with conventional CT angiography. AJR Am. J. Roentgenol. 199, 1402–1409 (2012).
doi: 10.2214/AJR.12.8652
Wielandner, A. et al. Is ECG triggering for motion artefact reduction in dual-source CT angiography of the ascending aorta still required with high-pitch scanning? The role of ECG-gating in high-pitch dual-source CT of the ascending aorta. Br. J. Radiol. 89, 20160174 (2016).
doi: 10.1259/bjr.20160174
Nakajima, S. et al. Clinical application of effective atomic number for classifying non-calcified coronary plaques by dual-energy computed tomography. Atherosclerosis 261, 138–143 (2017).
doi: 10.1016/j.atherosclerosis.2017.03.025
Schuhbäck, A. et al. Interobserver agreement for the detection of atherosclerotic plaque in coronary CT angiography: comparison of two low-dose image acquisition protocols with standard retrospectively ECG-gated reconstruction. Eur. Radiol. 22, 1529–1536 (2012).
doi: 10.1007/s00330-012-2389-2
Sandner, S. E. et al. Routine preoperative aortic computed tomography angiography is associated with reduced risk of stroke in coronary artery bypass grafting: a propensity-matched analysis. Eur. J. Cardiothorac. Surg. 57, 684–690 (2020).
pubmed: 31504374
Johnson, W. D., Flemma, R. J., Lepley, D. & Ellison, E. H. Extended treatment of severe coronary artery disease: a total surgical approach. Ann. Surg. 170, 460–470 (1969).
doi: 10.1097/00000658-196909010-00014
Kronzon, I. & Tunick, P. A. Aortic atherosclerotic disease and stroke. Circulation 114, 63–75 (2006).
doi: 10.1161/CIRCULATIONAHA.105.593418
Agatston, A. S. et al. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 15, 827–832 (1990).
doi: 10.1016/0735-1097(90)90282-T
Szilveszter, B., Celeng, C. & Maurovich-Horvat, P. Plaque assessment by coronary CT. Int. J. Cardiovasc. Imaging 32, 161–172 (2016).
doi: 10.1007/s10554-015-0741-8
van der Linden, J., Hadjinikolaou, L., Bergman, P. & Lindblom, D. Postoperative stroke in cardiac surgery is related to the location and extent of atherosclerotic disease in the ascending aorta. J. Am. Coll. Cardiol. 38, 131–135 (2001).
doi: 10.1016/S0735-1097(01)01328-6
Rosenberger, P. et al. The influence of epiaortic ultrasonography on intraoperative surgical management in 6051 cardiac surgical patients. Ann. Thorac. Surg. 85, 548–553 (2008).
doi: 10.1016/j.athoracsur.2007.08.061
Chatzikonstantinou, A. et al. CT angiography of the aorta is superior to transesophageal echocardiography for determining stroke subtypes in patients with cryptogenic ischemic stroke. Cerebrovasc. Dis. 33, 322–328 (2012).
doi: 10.1159/000335828
Schernthaner, R. E. et al. Dose modulated retrospective ECG-gated versus non-gated 64-row CT angiography of the aorta at the same radiation dose: comparison of motion artifacts, diagnostic confidence and signal-to-noise-ratios. Eur. J. Radiol. 81, e585–e590 (2012).
doi: 10.1016/j.ejrad.2011.06.053
Cooper, W. A. et al. Impact of renal dysfunction on outcomes of coronary artery bypass surgery: results from the Society of Thoracic Surgeons National Adult Cardiac Database. Circulation 113, 1063–1070 (2006).
doi: 10.1161/CIRCULATIONAHA.105.580084
McDonald, R. J. et al. Intravenous contrast material-induced nephropathy: causal or coincident phenomenon?. Radiology 267, 106–118 (2013).
doi: 10.1148/radiol.12121823
Bittner, D. O. et al. Contrast volume reduction using third generation dual source computed tomography for the evaluation of patients prior to transcatheter aortic valve implantation. Eur. Radiol. 26, 4497–4504 (2016).
doi: 10.1007/s00330-016-4320-8
Dankerl, P. et al. Computer-aided evaluation of low-dose and low-contrast agent third-generation dual-source CT angiography prior to transcatheter aortic valve implantation (TAVI). Int. J. Comput. Assist. Radiol. Surg. 12, 795–802 (2017).
doi: 10.1007/s11548-016-1470-8
Nakazato, R. et al. Statins use and coronary artery plaque composition: results from the International Multicenter CONFIRM Registry. Atherosclerosis 225, 148–153 (2012).
doi: 10.1016/j.atherosclerosis.2012.08.002
Roach, G. W. et al. Adverse cerebral outcomes after coronary bypass surgery. Multicenter study of perioperative ischemia research group and the ischemia research and education foundation investigators. N. Engl. J. Med. 335, 1857–1863 (1996).
doi: 10.1056/NEJM199612193352501
Filsoufi, F., Rahmanian, P. B., Castillo, J. G., Bronster, D. & Adams, D. H. Incidence, topography, predictors and long-term survival after stroke in patients undergoing coronary artery bypass grafting. Ann. Thorac. Surg. 85, 862–870 (2008).
doi: 10.1016/j.athoracsur.2007.10.060
Edelman, J. J., Yan, T. D., Bannon, P. G., Wilson, M. K. & Vallely, M. P. Coronary artery bypass grafting with and without manipulation of the ascending aorta: a meta-analysis. Heart Lung Circ. 20, 318–324 (2011).
doi: 10.1016/j.hlc.2011.02.003
Vallely, M. P. et al. Anaortic techniques reduce neurological morbidity after off-pump coronary artery bypass surgery. Heart Lung Circ. 17, 299–304 (2008).
doi: 10.1016/j.hlc.2007.11.138
Esenwa, C. & Gutierrez, J. Secondary stroke prevention: challenges and solutions. Vasc. Health Risk Manag. 11, 437–450 (2015).
pubmed: 26300647
pmcid: 4536764
Gass, A., Ay, H., Szabo, K. & Koroshetz, W. J. Diffusion-weighted MRI for the ‘small stuff’: the details of acute cerebral ischaemia. Lancet Neurol. 3, 39–45 (2004).
doi: 10.1016/S1474-4422(03)00621-5