Highly variable rate of orthodontic tooth movement measured by a novel 3D method correlates with gingival inflammation.
Gingival crevicular fluid
Inflammation
Intra-oral scan
Matrix metalloproteinases
Orthodontics
Three-dimensional imaging
Journal
Clinical oral investigations
ISSN: 1436-3771
Titre abrégé: Clin Oral Investig
Pays: Germany
ID NLM: 9707115
Informations de publication
Date de publication:
Apr 2021
Apr 2021
Historique:
received:
28
02
2020
accepted:
05
08
2020
pubmed:
19
8
2020
medline:
19
3
2021
entrez:
19
8
2020
Statut:
ppublish
Résumé
Individual orthodontic treatment duration is hard to predict. Individual biological factors are amongst factors influencing individual rate of orthodontically induced tooth movement (OTM). The study aim is to determine the rate of OTM by a novel 3D method and investigate parameters that may predict the rate of tooth movement. In this prospective cohort study, rate of OTM was determined from 90 three-dimensional intra-oral scans in 15 patients (aged 12-15) undergoing orthodontic treatment. For each patient, intra-oral scans were taken every week for up to 6 weeks (T0-T5). The teeth were segmented from the scans and the scans were superimposed on the palatal rugae. The rate of OTM was calculated for each tooth. Other parameters were gingival inflammation, contact-point displacement and the biological markers, matrix metalloproteinases (MMP), MMP-9 and MMP-2 in gingival crevicular fluid (GCF). Our study showed a high variation in the rate of OTM, varying from 0.15 to 1.24 mm/week. Teeth in the anterior segment tended to move more compared with the posterior segment. The contact point displacement and gingival inflammation varied greatly amongst the patients. The MMPs measured did not correlate with tooth movement. However, the gingival inflammation index showed a significant correlation with OTM. Future studies should include other biological markers related to bone-remodeling. This novel and efficient 3D method is suitable for measuring OTM and showed large individual variation in rate of OTM. Patients show different rates of OTM. The rate of OTM in an individual patient can provide guidance in timing of follow-up appointments.
Identifiants
pubmed: 32809076
doi: 10.1007/s00784-020-03502-2
pii: 10.1007/s00784-020-03502-2
pmc: PMC7966628
doi:
Substances chimiques
Matrix Metalloproteinase 9
EC 3.4.24.35
Types de publication
Journal Article
Langues
eng
Pagination
1945-1952Références
Schuller AA, van Kampen I, Poorterman J, Verrips G (2013) Kies voor tanden. Een onderzoek naar mondgezondheid en preventief tandheelkundig gedrag van jeugdigen. Hoofdmeting 2011, een vervolg op de reeks TJZ-onderzoeken. Rapportnummer: TNO/LS 2013 R10056
Yao J, Li DD, Yang YQ, McGrath CPJ, Mattheos N (2016) What are patients’ expectations of orthodontic treatment: a systematic review. BMC Oral Health 16(1):19
doi: 10.1186/s12903-016-0182-3
Chadwick S (2016) Iatrogenic effects of orthodontic treatment: decision-making in prevention, diagnosis and treatment. J Orthod 43(1):85–85
doi: 10.1080/14653125.2016.1143226
Pilon JJ, Kuijpers-Jagtman AM, Maltha JC (1996) Magnitude of orthodontic forces and rate of bodily tooth movement. An experimental study. Am J Orthod Dentofac Orthop 110(1):16–23
doi: 10.1016/S0889-5406(96)70082-3
Van Leeuwen EJ, Kuijpers-Jagtman AM, Von den Hoff JW, Wagener FADTG, Maltha JC (2010) Rate of orthodontic tooth movement after changing the force magnitude: an experimental study in beagle dogs. Orthod Craniofacial Res 13(4):238–245
doi: 10.1111/j.1601-6343.2010.01500.x
Jian F et al (2013) Initial arch wires for tooth alignment during orthodontic treatment with fixed appliances. Cochrane Database Syst Rev 2013(4) John Wiley and Sons Ltd
Henneman S, Von Den Hoff JW, Maltha JC (2008) Mechanobiology of tooth movement. Eur J Orthod 30(3):299–306
doi: 10.1093/ejo/cjn020
Krishnan V, Davidovitch Z (2009) On a path to unfolding the biological mechanisms of orthodontic tooth movement. J Dent Res 88(7):597–608
doi: 10.1177/0022034509338914
Snoek-van Beurden PAM, Von Den Hoff JW (2005) Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors. BioTechniques 38(1) Eaton Publishing Company:73–83
doi: 10.2144/05381RV01
Delima AJ, Van Dyke TE (2003) Origin and function of the cellular components in gingival crevice fluid. Periodontol 31(1):55–76
doi: 10.1034/j.1600-0757.2003.03105.x
Ren Y, Vissink A (Apr. 2008) Cytokines in crevicular fluid and orthodontic tooth movement. Eur J Oral Sci 116(2):89–97
doi: 10.1111/j.1600-0722.2007.00511.x
Kumar AA, Saravanan K, Kohila K, Kumar SS (2015) Biomarkers in orthodontic tooth movement. J Pharm Bioallied Sci. 7(Suppl 2):S325–S330
doi: 10.4103/0975-7406.163437
Yamaguchi M, Yoshii M, Kasai K (2006) Relationship between substance P and interleukin-1 β in gingival crevicular fl uid during orthodontic tooth movement in adults. Eur J Orthod 28:241–246
doi: 10.1093/ejo/cji100
Dudic A, Kiliaridis S, Mombelli A, Giannopoulou C (2006) Composition changes in gingival crevicular fluid during orthodontic tooth movement: comparisons between tension and compression sides. Eur J Oral Sci 114(5):416–422
doi: 10.1111/j.1600-0722.2006.00387.x
Bildt MM, Bloemen M, Kuijpers-Jagtman AM, Von Den Hoff JW (2009) Matrix metalloproteinases and tissue inhibitors of metalloproteinases in gingival crevicular fluid during orthodontic tooth movement. Eur J Orthod 31(5):529–535
doi: 10.1093/ejo/cjn127
Vandooren J, Geurts N, Martens E, Van Den Steen PE, Opdenakker G (2013) Zymography methods for visualizing hydrolytic enzymes. Nat Methods 10(3):211–220
doi: 10.1038/nmeth.2371
Takahashi I, Nishimura M, Onodera K, Bae JW, Mitani H, Okazaki M, Sasano Y, Mitani H (2003) Expression of MMP-8 and MMP-13 genes in the periodontal ligament during tooth movement in rats. J Dent Res 82(8):646–651
doi: 10.1177/154405910308200815
Ingman T, Apajalahti S, Mäntylä P, Savolainen P, Sorsa T (2005) Matrix metalloproteinase-1 and -8 in gingival crevicular fluid during orthodontic tooth movement: a pilot study during 1 month of follow-up after fixed appliance activation. Eur J Orthod 27(2):202–207
doi: 10.1093/ejo/cjh097
Cantarella G, Cantarella R, Caltabiano M, Risuglia N, Bernardini R, Leonardi R (2006) Levels of matrix metalloproteinases 1 and 2 in human gingival crevicular fluid during initial tooth movement. Am J Orthod Dentofac Orthop 130(5):568.e11–568.e16
doi: 10.1016/j.ajodo.2006.04.020
Martin CB, Chalmers EV, McIntyre GT, Cochrane H, Mossey PA (2015) Orthodontic scanners: what’s available? J Orthod 42(2):136–143
doi: 10.1179/1465313315Y.0000000001
Yun D, Choi DS, Jang I, Cha BK (Jul. 2018) Clinical application of an intraoral scanner for serial evaluation of orthodontic tooth movement: a preliminary study. Korean J Orthod 48(4):262–267
doi: 10.4041/kjod.2018.48.4.262
Giannopoulou C, Dudic A, Pandis N, Kiliaridis S (2016) Slow and fast orthodontic tooth movement: an experimental study on humans. Eur J Orthod 38(4):404–408
doi: 10.1093/ejo/cjv070
Power calculator for continuous outcome superiority trial, Sealed Envelope Ltd., 2012. [Online]. Available: www.sealedenvelope.com/power/continuous-superiority .
Francisconi MF, Janson G, Henriques JFC, de Freitas KMS (2016) Evaluation of the force generated by gradual deflection of orthodontic wires in conventional metallic, esthetic, and self-ligating brackets. J Appl Oral Sci 24(5):496–502
doi: 10.1590/1678-775720150405
Silness J, Löe H (1964) Periodontal disease in pregnancy II. Correlation between oral hygiene and periodontal condition. Acta Odontol Scand 22(1):121–135
doi: 10.3109/00016356408993968
Handem RH et al (2016) External root resorption with the self-ligating damon system—a retrospective study. Prog Orthod 17(1)
Cuperus AMR, Harms MC, Rangel FA, Bronkhorst EM, Schols JGJH, Breuning KH (2012) Dental models made with an intraoral scanner: a validation study. Am J Orthod Dentofac Orthop 142(3):308–313
doi: 10.1016/j.ajodo.2012.03.031
Nedelcu R, Olsson P, Nyström I, Rydén J, Thor A (2018) Accuracy and precision of 3 intraoral scanners and accuracy of conventional impressions: a novel in vivo analysis method. J Dent 69:110–118
doi: 10.1016/j.jdent.2017.12.006
Deferm JT, Schreurs R, Baan F, Bruggink R, Merkx MAW, Xi T, Bergé SJ, Maal TJJ (2018) Validation of 3D documentation of palatal soft tissue shape, color, and irregularity with intraoral scanning. Clin Oral Investig 22(3):1303–1309
doi: 10.1007/s00784-017-2198-8
Nada RM, Maal TJJ, Breuning KH, Bergé SJ, Mostafa YA, Kuijpers-Jagtman AM (2011) Accuracy and reproducibility of voxel based superimposition of cone beam computed tomography models on the anterior cranial base and the zygomatic arches. PLoS One 6(2)
Ongkosuwito EM, Goos JAC, Wattel E, Van Der Wal KGH, Van Adrichem LNA, Van Neck JW (2012) Assessment of volumetric changes with a best-fit method in three-dimensional stereophotograms. Cleft Palate-Craniofacial J 49(4):472–476
doi: 10.1597/10-270
Choi DS, Jeong YM, Jang I, Jost-Brinkmann PG, Cha BK (2010) Accuracy and reliability of palatal superimposition of three-dimensional digital models. Angle Orthod 80(4):685–691
doi: 10.2319/101309-569.1
Baan F et al (2016) A new 3D tool for assessing the accuracy of bimaxillary surgery: the OrthoGnathicanAlyser. PLoS One 11(2)
F. Baan, O. de Waard, R. Bruggink, T. Xi, E. M. Ongkosuwito, and T. J. J. Maal, Virtual setup in orthodontics: planning and evaluation, Clin. Oral Investig., 2019.
Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4 | Bates | Journal of Statistical Software. J Stat Softw 67(1):1–48
doi: 10.18637/jss.v067.i01
Saloom HF, Papageorgiou SN, Carpenter GH, Cobourne MT (2017) Impact of obesity on orthodontic tooth movement in adolescents: a prospective clinical cohort study. J Dent Res 96(5):547–554
doi: 10.1177/0022034516688448
Bildt MM, Bloemen M, Kuijpers-Jagtman AM, Von den Hoff JW (2008) Collagenolytic fragments and active gelatinase complexes in periodontitis. J Periodontol 79(9):1704–1711
doi: 10.1902/jop.2008.080021
Goldberg GI, Strongin A, Collier IE, Genrich LT, Marmer BL (1992) Interaction of 92-kDa type IV collagenase with the tissue inhibitor of metalloproteinases prevents dimerization, complex formation with interstitial collagenase, and activation of the proenzyme with stromelysin. J Biol Chem 267(7):4583–4591
doi: 10.1016/S0021-9258(18)42873-6
Baeza M, Garrido M, Hernández-Ríos P, Dezerega A, García-Sesnich J, Strauss F, Aitken JP, Lesaffre E, Vanbelle S, Gamonal J, Brignardello-Petersen R, Tervahartiala T, Sorsa T, Hernández M (2016) Diagnostic accuracy for apical and chronic periodontitis biomarkers in gingival crevicular fluid: an exploratory study. J Clin Periodontol 43(1):34–45
doi: 10.1111/jcpe.12479
Dudic A, Giannopoulou C, Kiliaridis S (2013) Factors related to the rate of orthodontically induced tooth movement. Am J Orthod Dentofac Orthop 143(5):616–621
doi: 10.1016/j.ajodo.2012.12.009