An Analysis of Isoclonal Antibody Formats Suggests a Role for Measuring PD-L1 with Low Molecular Weight PET Radiotracers.
Cancer
Immune checkpoint inhibitor
Immunotherapy
Precision medicine
Predictive biomarker
Journal
Molecular imaging and biology
ISSN: 1860-2002
Titre abrégé: Mol Imaging Biol
Pays: United States
ID NLM: 101125610
Informations de publication
Date de publication:
12 2020
12 2020
Historique:
received:
05
06
2020
accepted:
03
08
2020
revised:
30
07
2020
pubmed:
20
8
2020
medline:
6
8
2021
entrez:
20
8
2020
Statut:
ppublish
Résumé
The swell of new and diverse radiotracers to predict or monitor tumor response to cancer immunotherapies invites the opportunity for comparative studies to identify optimal platforms. To probe the significance of antibody format on image quality for PD-L1 imaging, we developed and studied the biodistribution of a library of antibodies based on the anti-PD-L1 IgG1 clone C4. A C4 minibody and scFv were cloned, expressed, and characterized. The antibodies were functionalized with desferrioxamine and radiolabeled with Zr-89 to enable a rigorous comparison with prior data collected using The tumor uptake of the In summary, these data support the use of low molecular weight constructs for PD-L1 imaging, especially for tumor types that manifest in abdominal organs that are obstructed by the clearance of high molecular weight radioligands.
Identifiants
pubmed: 32813112
doi: 10.1007/s11307-020-01527-3
pii: 10.1007/s11307-020-01527-3
pmc: PMC7669684
mid: NIHMS1622022
doi:
Substances chimiques
Antibodies
0
B7-H1 Antigen
0
CD274 protein, human
0
Radiopharmaceuticals
0
Single-Chain Antibodies
0
Zirconium
C6V6S92N3C
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1553-1561Subventions
Organisme : NCI NIH HHS
ID : U01 CA233100
Pays : United States
Organisme : NCRR NIH HHS
ID : S10 RR023051
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA082103
Pays : United States
Organisme : NCI NIH HHS
ID : P41 CA196276
Pays : United States
Organisme : NIBIB NIH HHS
ID : R01 EB025207
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA223484
Pays : United States
Organisme : NCI NIH HHS
ID : U01 CA244452
Pays : United States
Organisme : NCI NIH HHS
ID : R35 CA242986
Pays : United States
Références
Schumacher TN, Kesmir C, van Buuren MM (2015) Biomarkers in cancer immunotherapy. Cancer Cell 27:12–14
doi: 10.1016/j.ccell.2014.12.004
Patel SP, Kurzrock R (2015) PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther 14:847–856
doi: 10.1158/1535-7163.MCT-14-0983
Havel JJ, Chowell D, Chan TA (2019) The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer 19:133–150
doi: 10.1038/s41568-019-0116-x
Ehlerding EB, England CG, McNeel DG, Cai W (2016) Molecular imaging of immunotherapy targets in cancer. J Nucl Med 57:1487–1492
doi: 10.2967/jnumed.116.177493
Krekorian M, Fruhwirth GO, Srinivas M, Figdor CG, Heskamp S, Witney TH, Aarntzen EHJG (2019) Imaging of T-cells and their responses during anti-cancer immunotherapy. Theranostics 9:7924–7947
doi: 10.7150/thno.37924
Davis AA, Patel VG (2019) The role of PD-L1 expression as a predictive biomarker: an analysis of all US Food and Drug Administration (FDA) approvals of immune checkpoint inhibitors. J Immunother Cancer 7:278
doi: 10.1186/s40425-019-0768-9
Bensch F, van der Veen EL, Lub-de Hooge MN, Jorritsma-Smit A, Boellaard R, Kok IC, Oosting SF, Schröder CP, Hiltermann TJN, van der Wekken AJ, Groen HJM, Kwee TC, Elias SG, Gietema JA, Bohorquez SS, de Crespigny A, Williams SP, Mancao C, Brouwers AH, Fine BM, de Vries EGE (2018) (89)Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med 24:1852–1858
doi: 10.1038/s41591-018-0255-8
Niemeijer AN, Leung D, Huisman MC, Bahce I, Hoekstra OS, van Dongen GAMS, Boellaard R, du S, Hayes W, Smith R, Windhorst AD, Hendrikse NH, Poot A, Vugts DJ, Thunnissen E, Morin P, Lipovsek D, Donnelly DJ, Bonacorsi SJ, Velasquez LM, de Gruijl TD, Smit EF, de Langen AJ (2018) Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer. Nat Commun 9:4664
doi: 10.1038/s41467-018-07131-y
Huisman M, Niemeijer AL, Windhorst B, Schuit R, Leung D, Hayes W, Poot A, Bahce I, Radonic T, Oprea-Lager D, Hoekstra O, Thunnissen E, Hendrikse H, Smit E, de Langen J, Boellaard R (2020) Quantification of PD-L1 expression with [(18)F]BMS-986192 PET/CT in patients with advanced stage non-small-cell lung cancer. J Nucl Med:jnumed.119.240895
Knowles SM, Wu AM (2012) Advances in immuno-positron emission tomography: antibodies for molecular imaging in oncology. J Clin Oncol 30:3884–3892
doi: 10.1200/JCO.2012.42.4887
Truillet C, Oh HLJ, Yeo SP, Lee CY, Huynh LT, Wei J, Parker MFL, Blakely C, Sevillano N, Wang YH, Shen YS, Olivas V, Jami KM, Moroz A, Jego B, Jaumain E, Fong L, Craik CS, Chang AJ, Bivona TG, Wang CI, Evans MJ (2018) Imaging PD-L1 expression with ImmunoPET. Bioconjug Chem 29:96–103
doi: 10.1021/acs.bioconjchem.7b00631
Moroz A, Lee CY, Wang YH, Hsiao JC, Sevillano N, Truillet C, Craik CS, Fong L, Wang CI, Evans MJ (2018) A preclinical assessment of (89)Zr-atezolizumab identifies a requirement for carrier added formulations not observed with (89)Zr-C4. Bioconjug Chem 29:3476–3482
doi: 10.1021/acs.bioconjchem.8b00632
Xu Y, Poggio M, Jin HY, Shi Z, Forester CM, Wang Y, Stumpf CR, Xue L, Devericks E, So L, Nguyen HG, Griselin A, Gordan JD, Umetsu SE, Reich SH, Worland ST, Asthana S, Barna M, Webster KR, Cunningham JT, Ruggero D (2019) Translation control of the immune checkpoint in cancer and its therapeutic targeting. Nat Med 25:301–311
doi: 10.1038/s41591-018-0321-2
Hu S, Shively L, Raubitschek A et al (1996) Minibody: a novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res 56:3055–3061
pubmed: 8674062
De Silva RA, Kumar D, Lisok A et al (2018) Peptide-based (68)Ga-PET radiotracer for imaging PD-L1 expression in cancer. Mol Pharm 15:3946–3952
doi: 10.1021/acs.molpharmaceut.8b00399
Hu K, Kuan H, Hanyu M, Masayuki H, Xie L, Zhang Y, Nagatsu K, Kotaro N, Suzuki H, Hisashi S, Zhang MR (2019) Developing native peptide-based radiotracers for PD-L1 PET imaging and improving imaging contrast by pegylation. Chem Commun (Camb) 55:4162–4165
doi: 10.1039/C9CC00445A
Wissler HL, Ehlerding EB, Lyu Z, Zhao Y, Zhang S, Eshraghi A, Buuh ZY, McGuth JC, Guan Y, Engle JW, Bartlett SJ, Voelz VA, Cai W, Wang RE (2019) Site-specific immuno-PET tracer to image PD-L1. Mol Pharm 16:2028–2036
doi: 10.1021/acs.molpharmaceut.9b00010
Donnelly DJ, Smith RA, Morin P, Lipovšek D, Gokemeijer J, Cohen D, Lafont V, Tran T, Cole EL, Wright M, Kim J, Pena A, Kukral D, Dischino DD, Chow P, Gan J, Adelakun O, Wang XT, Cao K, Leung D, Bonacorsi SJ Jr, Hayes W (2018) Synthesis and biologic evaluation of a novel (18)F-labeled adnectin as a PET radioligand for imaging PD-L1 expression. J Nucl Med 59:529–535
doi: 10.2967/jnumed.117.199596
Mayer AT, Natarajan A, Gordon SR, Maute RL, McCracken MN, Ring AM, Weissman IL, Gambhir SS (2017) Practical immuno-PET radiotracer design considerations for human immune checkpoint imaging. J Nucl Med 58:538–546
doi: 10.2967/jnumed.116.177659