Use of supercritical carbon dioxide technology for fabricating a tissue engineering scaffold for anterior cruciate ligament repair.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
20 08 2020
Historique:
received: 26 07 2018
accepted: 04 08 2020
entrez: 22 8 2020
pubmed: 21 8 2020
medline: 24 4 2021
Statut: epublish

Résumé

Tissue-engineered grafts may be useful in Anterior Cruciate Ligament (ACL) repair and provide a novel, alternative treatment to clinical complications of rupture, harvest site morbidity and biocompatibility associated with autografts, allografts and synthetic grafts. We successfully used supercritical carbon dioxide (Sc-CO

Identifiants

pubmed: 32820218
doi: 10.1038/s41598-020-70994-z
pii: 10.1038/s41598-020-70994-z
pmc: PMC7441384
doi:

Substances chimiques

Carbon Dioxide 142M471B3J

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

14030

Références

Laurencin, C. T. & Freeman, J. W. Ligament tissue engineering: an evolutionary materials science approach. Biomaterials 26, 7530–7536. https://doi.org/10.1016/j.biomaterials.2005.05.073 (2005).
doi: 10.1016/j.biomaterials.2005.05.073 pubmed: 16045982
Mascarenhas, R. & MacDonald, P. B. Anterior cruciate ligament reconstruction: a look at prosthetics–past, present and possible future. McGill J. Med. 11, 29–37 (2008).
pubmed: 18523530 pmcid: 2322926
Kaeding, C. C., Leger-St-Jean, B. & Magnussen, R. A. Epidemiology and diagnosis of anterior cruciate ligament injuries. Clin. Sports Med. 36, 1–8. https://doi.org/10.1016/j.csm.2016.08.001 (2017).
doi: 10.1016/j.csm.2016.08.001 pubmed: 27871652
Bach, B. R. Jr. ACL treatment current trends and future directions. J. Knee Surg. 22, 5. https://doi.org/10.1055/s-0030-1247718 (2009).
doi: 10.1055/s-0030-1247718 pubmed: 19216344
Koski, J. A., Ibarra, C. & Rodeo, S. A. Tissue-engineered ligament: cells, matrix, and growth factors. Orthop. Clin. N. Am. 31, 437–452 (2000).
doi: 10.1016/S0030-5898(05)70162-0
Carey, J. L., Dunn, W. R., Dahm, D. L., Zeger, S. L. & Spindler, K. P. A systematic review of anterior cruciate ligament reconstruction with autograft compared with allograft. J. Bone Joint Surg. Am. 91, 2242–2250. https://doi.org/10.2106/JBJS.I.00610 (2009).
doi: 10.2106/JBJS.I.00610 pubmed: 19724004 pmcid: 2730860
Biau, D. J. et al. Patellar tendon versus hamstring tendon autografts for reconstructing the anterior cruciate ligament: a meta-analysis based on individual patient data. Am. J. Sports Med. 37, 2470–2478. https://doi.org/10.1177/0363546509333006 (2009).
doi: 10.1177/0363546509333006 pubmed: 19709991
Schindler, O. S. Surgery for anterior cruciate ligament deficiency: a historical perspective. Knee Surg. Sports Traumatol. Arthrosc. 20, 5–47. https://doi.org/10.1007/s00167-011-1756-x (2012).
doi: 10.1007/s00167-011-1756-x pubmed: 22105976
Zoltan, D. J., Reinecke, C. & Indelicato, P. A. Synthetic and allograft anterior cruciate ligament reconstruction. Clin. Sports Med. 7, 773–784 (1988).
pubmed: 3052882
Lopez-Vazquez, E., Juan, J. A., Vila, E. & Debon, J. Reconstruction of the anterior cruciate ligament with a Dacron prosthesis. J. Bone Joint Surg. Am. 73, 1294–1300 (1991).
doi: 10.2106/00004623-199173090-00003
Tischer, T. et al. Tissue engineering of the anterior cruciate ligament: a new method using acellularized tendon allografts and autologous fibroblasts. Arch. Orthop. Trauma Surg. 127, 735–741. https://doi.org/10.1007/s00402-007-0320-0 (2007).
doi: 10.1007/s00402-007-0320-0 pubmed: 17541614
Bell, E. Strategy for the selection of scaffolds for tissue engineering. Tissue Eng. 1, 163–179. https://doi.org/10.1089/ten.1995.1.163 (1995).
doi: 10.1089/ten.1995.1.163 pubmed: 19877925
Kular, J. K., Basu, S. & Sharma, R. I. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J. Tissue Eng. 5, 2041731414557112. https://doi.org/10.1177/2041731414557112 (2014).
doi: 10.1177/2041731414557112 pubmed: 25610589 pmcid: 4883592
Bernardino, S. ACL prosthesis: any promise for the future?. Knee Surg. Sports Traumatol. Arthrosc. 18, 797–804. https://doi.org/10.1007/s00167-009-0982-y (2010).
doi: 10.1007/s00167-009-0982-y pubmed: 19915821
Fages, J. et al. Use of supercritical CO
doi: 10.1016/0142-9612(94)90162-7 pubmed: 7948586
Fages, J. et al. Viral inactivation of human bone tissue using supercritical fluid extraction. ASAIO J 44, 289–293 (1998).
doi: 10.1097/00002480-199807000-00009
Jimenez, A., Zhang, J. & Matthews, M. A. Evaluation of CO
doi: 10.1002/bit.21983 pubmed: 18571803
Zhang, X., Heinonen, S. & Levänen, E. Applications of supercritical carbon dioxide in materials processing and synthesis. RSC Adv. 4, 61137–61152. https://doi.org/10.1039/c4ra10662h (2014).
doi: 10.1039/c4ra10662h
Cooper, A. I. Porous materials and supercritical fluids. Adv. Mater. 15, 1049–1059. https://doi.org/10.1002/adma.200300380 (2003).
doi: 10.1002/adma.200300380
Peet, K. C. et al. Microbial growth under supercritical CO
doi: 10.1128/AEM.03162-14 pubmed: 25681188 pmcid: 4375327
Ribeiro, N. et al. A new era for sterilization based on supercritical CO
doi: 10.1002/jbm.b.34398 pubmed: 31617960
Guler, S., Aslan, B., Hosseinian, P. & Aydin, H. M. Supercritical carbon dioxide-assisted decellularization of aorta and cornea. Tissue Eng. C Methods 23, 540–547. https://doi.org/10.1089/ten.TEC.2017.0090 (2017).
doi: 10.1089/ten.TEC.2017.0090
Seo, Y., Jung, Y. & Kim, S. H. Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis. Acta Biomater. 67, 270–281. https://doi.org/10.1016/j.actbio.2017.11.046 (2018).
doi: 10.1016/j.actbio.2017.11.046 pubmed: 29223704
You, L. et al. In vivo immunogenicity of bovine bone removed by a novel decellularization protocol based on supercritical carbon dioxide. Artif. Cells Nanomed. Biotechnol. 46, 334–344. https://doi.org/10.1080/21691401.2018.1457044 (2018).
doi: 10.1080/21691401.2018.1457044 pubmed: 29726299
Robinson, H. N. The ellipse. In Conic Sections and Analytical Geometry, Theoretically and Practically Illustrated (ed. Robinson, H. N.) 11–40 (Blakeman & Company, Ivison, 1889).
Baumgart, E. Stiffness: an unknown world of mechanical science?. Injury 31(Suppl 2), S14–S23 (2000).
Gere, J. M. & Goodno, B. J. Tension, compression and shear. In Mechanics of Materials (ed. Shortt, C.) 7–8 (Cengage Learning, Boston, 2012).
Smith, D. R. The Cauchy stress tensor. In An Introduction to Continuum Mechanics—After Truesdell and Noll (ed. Smith, D. R.) 142–144 (Springer, Berlin, 1993).
doi: 10.1007/978-94-017-0713-8
Gineyts, E., Borel, O., Chapurlat, R. & Garnero, P. Quantification of immature and mature collagen crosslinks by liquid chromatography-electrospray ionization mass spectrometry in connective tissues. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 878, 1449–1454. https://doi.org/10.1016/j.jchromb.2010.03.039 (2010).
doi: 10.1016/j.jchromb.2010.03.039
Wong, M. W., Lui, W. T., Fu, S. C. & Lee, K. M. The effect of glucocorticoids on tendon cell viability in human tendon explants. Acta Orthop. 80, 363–367. https://doi.org/10.3109/17453670902988386 (2009).
doi: 10.3109/17453670902988386 pubmed: 19421908
Banes, A. J. et al. Cell populations of tendon: a simplified method for isolation of synovial cells and internal fibroblasts: confirmation of origin and biologic properties. J. Orthop. Res. 6, 83–94. https://doi.org/10.1002/jor.1100060111 (1988).
doi: 10.1002/jor.1100060111 pubmed: 3334741
Bachy, M. et al. Anterior cruciate ligament surgery in the rabbit. J. Orthop. Surg. Res. 8, 27. https://doi.org/10.1186/1749-799X-8-27 (2013).
doi: 10.1186/1749-799X-8-27 pubmed: 23957941 pmcid: 3765288
Wydra, F. B., York, P. J., Johnson, C. R. & Silvestri, L. Allografts for ligament reconstruction: where are we now?. Am J. Orthop. (Belle Mead N. J.) 45, 446–452 (2016).
Maletis, G. B., Chen, J., Inacio, M. C. S., Love, R. M. & Funahashi, T. T. Increased risk of revision after anterior cruciate ligament reconstruction with soft tissue allografts compared with autografts: graft processing and time make a difference. Am. J. Sports Med. 45, 1837–1844. https://doi.org/10.1177/0363546517694354 (2017).
doi: 10.1177/0363546517694354 pubmed: 28301224
Marrale, J., Morrissey, M. C. & Haddad, F. S. A literature review of autograft and allograft anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 15, 690–704. https://doi.org/10.1007/s00167-006-0236-1 (2007).
doi: 10.1007/s00167-006-0236-1 pubmed: 17429611
Grover, C. N., Cameron, R. E. & Best, S. M. Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering. J. Mech. Behav. Biomed. Mater. 10, 62–74. https://doi.org/10.1016/j.jmbbm.2012.02.028 (2012).
doi: 10.1016/j.jmbbm.2012.02.028 pubmed: 22520419
Mae, T. et al. Effect of gamma irradiation on remodeling process of tendon allograft. Clin. Orthop. Relat. Res. https://doi.org/10.1097/01.blo.0000079440.64912.c3 (2003).
doi: 10.1097/01.blo.0000079440.64912.c3 pubmed: 12966305
Park, S. S., Dwyer, T., Congiusta, F., Whelan, D. B. & Theodoropoulos, J. Analysis of irradiation on the clinical effectiveness of allogenic tissue when used for primary anterior cruciate ligament reconstruction. Am. J. Sports Med. 43, 226–235. https://doi.org/10.1177/0363546513518004 (2015).
doi: 10.1177/0363546513518004 pubmed: 24477819
Schwartz, H. E. et al. The effect of gamma irradiation on anterior cruciate ligament allograft biomechanical and biochemical properties in the caprine model at time zero and at 6 months after surgery. Am. J. Sports Med. 34, 1747–1755. https://doi.org/10.1177/0363546506288851 (2006).
doi: 10.1177/0363546506288851 pubmed: 16735581
Bui, D. et al. Meniscal allograft sterilisation: effect on biomechanical and histological properties. Cell Tissue Bank 16, 467–475. https://doi.org/10.1007/s10561-014-9492-3 (2015).
doi: 10.1007/s10561-014-9492-3 pubmed: 25589449
Baldini, T., Caperton, K., Hawkins, M. & McCarty, E. Effect of a novel sterilization method on biomechanical properties of soft tissue allografts. Knee Surg. Sports Traumatol. Arthrosc. 24, 3971–3975. https://doi.org/10.1007/s00167-014-3221-0 (2016).
doi: 10.1007/s00167-014-3221-0 pubmed: 25100489
Nichols, A., Burns, D. C. & Christopher, R. Studies on the sterilization of human bone and tendon musculoskeletal allograft tissue using supercritical carbon dioxide. J. Orthop. 6, 2 (2009).
Sun, Y., Lovric, V., Wang, T., Oliver, R. A. & Walsh, W. R. Effects of SCCO(2), gamma irradiation, and sodium dodecyl sulfate treatments on the initial properties of tendon allografts. Int. J. Mol. Sci. 21, 1565. https://doi.org/10.3390/ijms21051565 (2020).
doi: 10.3390/ijms21051565 pmcid: 7084268
Crapo, P. M., Gilbert, T. W. & Badylak, S. F. An overview of tissue and whole organ decellularization processes. Biomaterials 32, 3233–3243. https://doi.org/10.1016/j.biomaterials.2011.01.057 (2011).
doi: 10.1016/j.biomaterials.2011.01.057 pubmed: 21296410 pmcid: 3084613
Gilpin, A. & Yang, Y. Decellularization strategies for regenerative medicine: from processing techniques to applications. BioMed. Res. Int. 2017, 9831534–9831534. https://doi.org/10.1155/2017/9831534 (2017).
doi: 10.1155/2017/9831534 pubmed: 28540307 pmcid: 5429943
Fernandez-Perez, J. & Ahearne, M. The impact of decellularization methods on extracellular matrix derived hydrogels. Sci. Rep. 9, 14933. https://doi.org/10.1038/s41598-019-49575-2 (2019).
doi: 10.1038/s41598-019-49575-2 pubmed: 31624357 pmcid: 6797749
Russell, N., Rives, A., Pelletier, M. H., Wang, T. & Walsh, W. R. The effect of supercritical carbon dioxide sterilization on the anisotropy of bovine cortical bone. Cell Tissue Bank 16, 109–121. https://doi.org/10.1007/s10561-014-9447-8 (2015).
doi: 10.1007/s10561-014-9447-8 pubmed: 24737303
Hennessy, R. S. et al. Supercritical carbon dioxide-based sterilization of decellularized heart valves. JACC Basic Transl. Sci. 2, 71–84. https://doi.org/10.1016/j.jacbts.2016.08.009 (2017).
doi: 10.1016/j.jacbts.2016.08.009 pubmed: 28337488 pmcid: 5358672
Spink, C. H. Differential scanning calorimetry. Methods Cell Biol. 84, 115–141. https://doi.org/10.1016/S0091-679X(07)84005-2 (2008).
doi: 10.1016/S0091-679X(07)84005-2 pubmed: 17964930
Giannini, S. et al. Effects of freezing on the biomechanical and structural properties of human posterior tibial tendons. Int. Orthop. 32, 145–151. https://doi.org/10.1007/s00264-006-0297-2 (2008).
doi: 10.1007/s00264-006-0297-2 pubmed: 17216243
Sun, W. Q. & Leung, P. Calorimetric study of extracellular tissue matrix degradation and instability after gamma irradiation. Acta Biomater. 4, 817–826. https://doi.org/10.1016/j.actbio.2008.02.006 (2008).
doi: 10.1016/j.actbio.2008.02.006 pubmed: 18334308
Bachy, M. et al. Allograft integration in a rabbit transgenic model for anterior cruciate ligament reconstruction. Orthop. Traumatol. Surg. Res. 102, 189–195. https://doi.org/10.1016/j.otsr.2015.12.007 (2016).
doi: 10.1016/j.otsr.2015.12.007 pubmed: 26775085
Hangody, G. et al. Does a different dose of gamma irradiation have the same effect on five different types of tendon allografts? A biomechanical study. Int. Orthop. 41, 357–365. https://doi.org/10.1007/s00264-016-3336-7 (2017).
doi: 10.1007/s00264-016-3336-7 pubmed: 27847977

Auteurs

Ines Sherifi (I)

Laboratoire de Bioingénierie et Biomécanique Ostéo-Articulaire (B2OA), UMR, CNRS 7052, Paris 7 University, Paris, France.
Division of Cardiology, Department of Medicine, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, USA.

Manon Bachy (M)

Laboratoire de Bioingénierie et Biomécanique Ostéo-Articulaire (B2OA), UMR, CNRS 7052, Paris 7 University, Paris, France.
Department of Pediatric Orthopaedic Surgery, AP-HP, Hôpital Trousseau, Paris, France.

Thomas Laumonier (T)

Department of Orthopaedic Surgery, Faculty of Medicine, Geneva University Hospitals, Avenue Gabrielle Perret Gentil 4, 1205, Geneva, Switzerland.

Hervé Petite (H)

Laboratoire de Bioingénierie et Biomécanique Ostéo-Articulaire (B2OA), UMR, CNRS 7052, Paris 7 University, Paris, France.

Didier Hannouche (D)

Laboratoire de Bioingénierie et Biomécanique Ostéo-Articulaire (B2OA), UMR, CNRS 7052, Paris 7 University, Paris, France. didier.hannouche@hcuge.ch.
Department of Orthopaedic Surgery, Faculty of Medicine, Geneva University Hospitals, Avenue Gabrielle Perret Gentil 4, 1205, Geneva, Switzerland. didier.hannouche@hcuge.ch.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH