Emotion Assessment Using Feature Fusion and Decision Fusion Classification Based on Physiological Data: Are We There Yet?


Journal

Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366

Informations de publication

Date de publication:
21 Aug 2020
Historique:
received: 28 07 2020
revised: 16 08 2020
accepted: 19 08 2020
entrez: 23 8 2020
pubmed: 23 8 2020
medline: 27 3 2021
Statut: epublish

Résumé

Emotion recognition based on physiological data classification has been a topic of increasingly growing interest for more than a decade. However, there is a lack of systematic analysis in literature regarding the selection of classifiers to use, sensor modalities, features and range of expected accuracy, just to name a few limitations. In this work, we evaluate emotion in terms of low/high arousal and valence classification through Supervised Learning (SL), Decision Fusion (DF) and Feature Fusion (FF) techniques using multimodal physiological data, namely, Electrocardiography (ECG), Electrodermal Activity (EDA), Respiration (RESP), or Blood Volume Pulse (BVP). The main contribution of our work is a systematic study across five public datasets commonly used in the Emotion Recognition (ER) state-of-the-art, namely: (1) Classification performance analysis of ER benchmarking datasets in the arousal/valence space; (2) Summarising the ranges of the classification accuracy reported across the existing literature; (3) Characterising the results for diverse classifiers, sensor modalities and feature set combinations for ER using accuracy and F1-score; (4) Exploration of an extended feature set for each modality; (5) Systematic analysis of multimodal classification in DF and FF approaches. The experimental results showed that FF is the most competitive technique in terms of classification accuracy and computational complexity. We obtain superior or comparable results to those reported in the state-of-the-art for the selected datasets.

Identifiants

pubmed: 32825624
pii: s20174723
doi: 10.3390/s20174723
pmc: PMC7506892
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Xinhua Net Future Media Convergence Institute
ID : S-0003-LX-18
Organisme : European Regional Development Fund
ID : TIN2017-85409-P
Organisme : Instituto de Telecomunicações
ID : UIDB/50008/2020

Références

Psychophysiology. 2011 Jul;48(7):908-22
pubmed: 21261632
Sensors (Basel). 2018 Nov 11;18(11):
pubmed: 30423894
Sensors (Basel). 2020 Jan 21;20(3):
pubmed: 31973140
Sensors (Basel). 2018 Jun 28;18(7):
pubmed: 29958457
Sensors (Basel). 2019 Sep 03;19(17):
pubmed: 31484423
Biomed Res Int. 2017;2017:8317357
pubmed: 28900626
Am Psychol. 1995 May;50(5):372-85
pubmed: 7762889
Technol Health Care. 2018;26(S1):509-519
pubmed: 29758974
BMC Med Inform Decis Mak. 2017 Dec 20;17(Suppl 3):167
pubmed: 29297324
Sensors (Basel). 2019 Oct 16;19(20):
pubmed: 31623279
Sci Rep. 2019 Apr 24;9(1):6486
pubmed: 31019217
Comput Intell Neurosci. 2018 Jul 5;2018:5296523
pubmed: 30073024

Auteurs

Patrícia Bota (P)

Instituto Superior Técnico (IST), Department of Bioengineering (DBE) and Instituto de Telecomunicações (IT), Av. Rovisco Pais n. 1, Torre Norte-Piso 10, 1049-001 Lisbon, Portugal.

Chen Wang (C)

State Key Laboratory of Media Convergence Production Technology and Systems, Xinhua News Agency & Future Media Convergence Institute (FMCI), Xinhua Net, Jinxuan Building, No. 129 Xuanwumen West Street, Beijing 100031, China.

Ana Fred (A)

Instituto Superior Técnico (IST), Department of Bioengineering (DBE) and Instituto de Telecomunicações (IT), Av. Rovisco Pais n. 1, Torre Norte-Piso 10, 1049-001 Lisbon, Portugal.

Hugo Silva (H)

Instituto Superior Técnico (IST), Department of Bioengineering (DBE) and Instituto de Telecomunicações (IT), Av. Rovisco Pais n. 1, Torre Norte-Piso 10, 1049-001 Lisbon, Portugal.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH