Spatial protein analysis in developing tissues: a sampling-based image processing approach.
cell and developmental biology
gene expression
image analysis
immunofluorescence
protein quantification
segmentation
Journal
Philosophical transactions of the Royal Society of London. Series B, Biological sciences
ISSN: 1471-2970
Titre abrégé: Philos Trans R Soc Lond B Biol Sci
Pays: England
ID NLM: 7503623
Informations de publication
Date de publication:
12 10 2020
12 10 2020
Historique:
entrez:
25
8
2020
pubmed:
25
8
2020
medline:
13
5
2021
Statut:
ppublish
Résumé
Advances in fluorescence microscopy approaches have made it relatively easy to generate multi-dimensional image volumes and have highlighted the need for flexible image analysis tools for the extraction of quantitative information from such data. Here we demonstrate that by focusing on simplified feature-based nuclear segmentation and probabilistic cytoplasmic detection we can create a tool that is able to extract geometry-based information from diverse mammalian tissue images. Our open-source image analysis platform, called 'SilentMark', can cope with three-dimensional noisy images and with crowded fields of cells to quantify signal intensity in different cellular compartments. Additionally, it provides tissue geometry related information, which allows one to quantify protein distribution with respect to marked regions of interest. The lightweight SilentMark algorithms have the advantage of not requiring multiple processors, graphics cards or training datasets and can be run even with just several hundred megabytes of memory. This makes it possible to use the method as a Web application, effectively eliminating setup hurdles and compatibility issues with operating systems. We test this platform on mouse pre-implantation embryos, embryonic stem cell-derived embryoid bodies and mouse embryonic heart, and relate protein localization to tissue geometry. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.
Identifiants
pubmed: 32829691
doi: 10.1098/rstb.2019.0560
pmc: PMC7482225
doi:
Substances chimiques
Proteins
0
Banques de données
figshare
['10.6084/m9.figshare.c.5056727']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
20190560Subventions
Organisme : British Heart Foundation
ID : FS/18/24/33424
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/J014427/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/F011512/1
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 103788/Z/14/Z
Pays : United Kingdom
Références
Dev Cell. 2009 Mar;16(3):398-410
pubmed: 19289085
Cell. 2005 Dec 2;123(5):917-29
pubmed: 16325584
J Embryol Exp Morphol. 1985 Jun;87:27-45
pubmed: 3897439
Dev Growth Differ. 2017 Jan;59(1):12-20
pubmed: 28035666
Development. 2014 Jun;141(11):2279-88
pubmed: 24866117
Annu Rev Plant Biol. 2010;61:65-87
pubmed: 20192756
Dev Growth Differ. 2010 Apr;52(3):263-73
pubmed: 20100249
Elife. 2015 May 06;4:05864
pubmed: 25946108
Development. 2010 Feb;137(3):395-403
pubmed: 20081188
Nat Methods. 2010 Jul;7(7):547-53
pubmed: 20543845
Nat Methods. 2015 Nov;12(11):1033-8
pubmed: 26389570
Nat Biotechnol. 2010 Apr;28(4):348-53
pubmed: 20231818
Cell. 2010 Sep 3;142(5):773-86
pubmed: 20813263
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
Nat Rev Mol Cell Biol. 2013 Jul;14(7):452-9
pubmed: 23778971
Source Code Biol Med. 2013 Aug 09;8(1):16
pubmed: 23938087
Dev Cell. 2014 Aug 25;30(4):410-22
pubmed: 25127056
Dev Cell. 2016 Jan 25;36(2):225-40
pubmed: 26812020
PLoS Biol. 2011 Feb;9(2):e1001019
pubmed: 21364967
Nat Rev Mol Cell Biol. 2012 Sep;13(9):591-600
pubmed: 22895435
Stem Cell Reports. 2014 Mar 11;2(3):382-97
pubmed: 24672759
PLoS Genet. 2011 Feb;7(2):e1001313
pubmed: 21379568
IEEE Trans Pattern Anal Mach Intell. 1987 May;9(5):690-8
pubmed: 21869428
Science. 2014 Jan 10;343(6167):193-6
pubmed: 24408435
Curr Opin Genet Dev. 2011 Oct;21(5):630-7
pubmed: 21893410