Dietary folate intake and metabolic syndrome in participants of PREDIMED-Plus study: a cross-sectional study.
Cardiometabolic risk
Cholesterol
Diabetes
Folate
Metabolic syndrome score
Journal
European journal of nutrition
ISSN: 1436-6215
Titre abrégé: Eur J Nutr
Pays: Germany
ID NLM: 100888704
Informations de publication
Date de publication:
Mar 2021
Mar 2021
Historique:
received:
12
03
2020
accepted:
10
08
2020
pubmed:
25
8
2020
medline:
24
6
2021
entrez:
25
8
2020
Statut:
ppublish
Résumé
We examined the association between dietary folate intake and a score of MetS (metabolic syndrome) and its components among older adults at higher cardiometabolic risk participating in the PREDIMED-Plus trial. A cross-sectional analysis with 6633 with overweight/obesity participants with MetS was conducted. Folate intake (per 100 mcg/day and in quintiles) was estimated using a validated food frequency questionnaire. We calculated a MetS score using the standardized values as shown in the formula: [(body mass index + waist-to-height ratio)/2] + [(systolic blood pressure + diastolic blood pressure)/2] + plasma fasting glucose-HDL cholesterol + plasma triglycerides. The MetS score as continuous variable and its seven components were the outcome variables. Multiple robust linear regression using MM-type estimator was performed to evaluate the association adjusting for potential confounders. We observed that an increase in energy-adjusted folate intake was associated with a reduction of MetS score (β for 100 mcg/day = - 0.12; 95% CI: - 0.19 to - 0.05), and plasma fasting glucose (β = - 0.03; 95% CI: - 0.05 to - 0.02) independently of the adherence to Mediterranean diet and other potential confounders. We also found a positive association with HDL-cholesterol (β = 0.07; 95% CI: 0.04-0.10). These associations were also observed when quintiles of energy-adjusted folate intake were used instead. This study suggests that a higher folate intake may be associated with a lower MetS score in older adults, a lower plasma fasting glucose, and a greater HDL cholesterol in high-risk cardio-metabolic subjects.
Identifiants
pubmed: 32833162
doi: 10.1007/s00394-020-02364-4
pii: 10.1007/s00394-020-02364-4
doi:
Substances chimiques
Folic Acid
935E97BOY8
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1125-1136Subventions
Organisme : Instituto de Salud Carlos III
ID : PI13/00673
Organisme : Instituto de Salud Carlos III
ID : PI13/00492
Organisme : Instituto de Salud Carlos III
ID : PI13/00272
Organisme : Instituto de Salud Carlos III
ID : PI13/01123
Organisme : Instituto de Salud Carlos III
ID : PI13/00462
Organisme : Instituto de Salud Carlos III
ID : PI13/00233
Organisme : Instituto de Salud Carlos III
ID : PI13/02184
Organisme : Instituto de Salud Carlos III
ID : PI13/00728
Organisme : Instituto de Salud Carlos III
ID : PI13/01090
Organisme : Instituto de Salud Carlos III
ID : PI13/01056
Organisme : Instituto de Salud Carlos III
ID : PI14/01722
Organisme : Instituto de Salud Carlos III
ID : PI14/00636
Organisme : Instituto de Salud Carlos III
ID : PI14/00618
Organisme : Instituto de Salud Carlos III
ID : PI14/00696
Organisme : Instituto de Salud Carlos III
ID : PI14/01206
Organisme : Instituto de Salud Carlos III
ID : PI14/01919
Organisme : Instituto de Salud Carlos III
ID : PI14/00853
Organisme : Instituto de Salud Carlos III
ID : PI14/01374
Organisme : Instituto de Salud Carlos III
ID : PI16/00473
Organisme : Instituto de Salud Carlos III
ID : PI16/00662
Organisme : Instituto de Salud Carlos III
ID : PI16/01873
Organisme : Instituto de Salud Carlos III
ID : PI16/01094
Organisme : Instituto de Salud Carlos III
ID : PI16/00501
Organisme : Instituto de Salud Carlos III
ID : PI16/00533
Organisme : Instituto de Salud Carlos III
ID : PI16/00381
Organisme : Instituto de Salud Carlos III
ID : PI16/00366
Organisme : Instituto de Salud Carlos III
ID : PI16/01522
Organisme : Instituto de Salud Carlos III
ID : PI16/01120
Organisme : Instituto de Salud Carlos III
ID : PI17/00764
Organisme : Instituto de Salud Carlos III
ID : PI17/01183
Organisme : Instituto de Salud Carlos III
ID : PI17/00855
Organisme : Instituto de Salud Carlos III
ID : PI17/01347
Organisme : Instituto de Salud Carlos III
ID : PI17/00525
Organisme : Instituto de Salud Carlos III
ID : PI17/01827
Organisme : Instituto de Salud Carlos III
ID : PI17/00532
Organisme : Instituto de Salud Carlos III
ID : PI17/00215
Organisme : Instituto de Salud Carlos III
ID : PI17/01441
Organisme : Instituto de Salud Carlos III
ID : PI17/00508
Organisme : Instituto de Salud Carlos III
ID : PI17/01732
Organisme : Instituto de Salud Carlos III
ID : PI17/00926
Organisme : H2020 European Research Council
ID : Advanced Research Grant 2013-2018, 340918
Organisme : Recercaixa
ID : 2013ACUP00194
Organisme : Consejería de Salud de la Junta de Andalucía
ID : PI0458/2013
Organisme : Consejería de Salud de la Junta de Andalucía
ID : PS0358/2016
Organisme : Consejería de Salud de la Junta de Andalucía
ID : PI0137/2018
Organisme : Conselleria d'Educació, Investigació, Cultura i Esport
ID : PROMETEO/2017/017
Organisme : SEMERGEN grant, and funds from the European Regional Development Fund
ID : CB06/03
Organisme : SEMERGEN grant, and funds from the European Regional Development Fund
ID : CB12/03
Organisme : The International Nut & Dried Fruit Council - FESNAD
ID : Long-term effects of an energy-restricted Mediterranean diet on mortality and cardiovascular disease 2014 -2015, No. 201302
Organisme : AstraZeneca
ID : Young Investigators Award in Category of Obesity and T2D 2017
Organisme : EU-COST Action
ID : CA16112
Organisme : Balearic Islands Government, Grants from Balearic Islands Health Research Institute (IDISBA)
ID : Grant of support to research groups no. 35/2011
Commentaires et corrections
Type : ErratumIn
Références
Roth GA, Johnson C, Abajobir A et al (2017) Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol 70:1–25. https://doi.org/10.1016/j.jacc.2017.04.052
doi: 10.1016/j.jacc.2017.04.052
pubmed: 28527533
pmcid: 5491406
Ansarimoghaddam A, Adineh HA, Zareban I et al (2018) Prevalence of metabolic syndrome in Middle-East countries: meta-analysis of cross-sectional studies. Diabetes Metab Syndr 12:195–201. https://doi.org/10.1016/j.dsx.2017.11.004
doi: 10.1016/j.dsx.2017.11.004
pubmed: 29203060
Ford ES, Giles WH, Dietz WH (2002) Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 287:356–359
doi: 10.1001/jama.287.3.356
Guallar-Castillón P, Pérez RF, López García E et al (2014) Magnitude and management of metabolic syndrome in Spain in 2008–2010: the ENRICA study. Rev Espanola Cardiol Engl Ed 67:367–373. https://doi.org/10.1016/j.rec.2013.08.014
doi: 10.1016/j.rec.2013.08.014
Raposo L, Severo M, Barros H, Santos AC (2017) The prevalence of the metabolic syndrome in Portugal: the PORMETS study. BMC Public Health 17:555. https://doi.org/10.1186/s12889-017-4471-9
doi: 10.1186/s12889-017-4471-9
pubmed: 28595618
pmcid: 5465455
Ford SE, Li C, Zhao G (2010) Prevalence and correlates of metabolic syndrome based on a harmonious definition among adults in the US. J Diabetes 2:180–193. https://doi.org/10.1111/j.1753-0407.2010.00078.x
doi: 10.1111/j.1753-0407.2010.00078.x
pubmed: 20923483
Athvros VG, Ganotakis ES, Elisaf M et al (2005) The prevalence of the metabolic syndrome using the National Cholesterol Educational Program and International Diabetes Federation definitions. Curr Med Res Opin 21:1157–1159. https://doi.org/10.1185/030079905x53333
doi: 10.1185/030079905x53333
Bhatnagar A (2017) Environmental determinants of cardiovascular disease. Circ Res 121:162–180. https://doi.org/10.1161/CIRCRESAHA.117.306458
doi: 10.1161/CIRCRESAHA.117.306458
pubmed: 28684622
pmcid: 5777598
Kwan GF, Mayosi BM, Mocumbi AO et al (2016) Endemic cardiovascular diseases of the poorest billion. Circulation 133:2561–2575. https://doi.org/10.1161/CIRCULATIONAHA.116.008731
doi: 10.1161/CIRCULATIONAHA.116.008731
pubmed: 27297348
Ebara S (2017) Nutritional role of folate. Congenit Anom 57:138–141. https://doi.org/10.1111/cga.12233
doi: 10.1111/cga.12233
de Bree A, van Mierlo LA, Draijer R (2007) Folic acid improves vascular reactivity in humans: a meta-analysis of randomized controlled trials. Am J Clin Nutr 86:610–617. https://doi.org/10.1093/ajcn/86.3.610
doi: 10.1093/ajcn/86.3.610
pubmed: 17823424
Stanhewicz AE, Alexander LM, Kennedy WL (2015) Folic acid supplementation improves microvascular function in older adults through nitric oxide-dependent mechanisms. Clin Sci (Lond) 129:159–167. https://doi.org/10.1042/CS20140821
doi: 10.1042/CS20140821
Stanhewicz AE, Kenney WL (2017) Role of folic acid in nitric oxide bioavailability and vascular endothelial function. Nutr Rev 75:61–70. https://doi.org/10.1093/nutrit/nuw053
doi: 10.1093/nutrit/nuw053
pubmed: 27974600
Grandl G, Wolfrum C (2018) Hemostasis, endothelial stress, inflammation, and the metabolic syndrome. Semin Immunopathol 40:215–224. https://doi.org/10.1007/s00281-017-0666-5
doi: 10.1007/s00281-017-0666-5
pubmed: 29209827
Setola E, Monti LD, Galluccio E et al (2004) Insulin resistance and endothelial function are improved after folate and vitamin B12 therapy in patients with metabolic syndrome: relationship between homocysteine levels and hyperinsulinemia. Eur J Endocrinol 151:483–489. https://doi.org/10.1530/eje.0.1510483
doi: 10.1530/eje.0.1510483
pubmed: 15476449
da Silva RP, Kelly KB, Al Rajabi A, Jacobs RL (2014) Novel insights on interactions between folate and lipid metabolism. BioFactors Oxf Engl 40:277–283. https://doi.org/10.1002/biof.1154
doi: 10.1002/biof.1154
Sreckovic B, Sreckovic VD, Soldatovic I et al (2017) Homocysteine is a marker for metabolic syndrome and atherosclerosis. Diabetes Metab Syndr 11:179–182. https://doi.org/10.1016/j.dsx.2016.08.026
doi: 10.1016/j.dsx.2016.08.026
pubmed: 27600468
Wu Y, Li S, Wang W et al (2020) Associations of dietary vitamin B1, vitamin B2, niacin, vitamin B6, vitamin B12 and folate equivalent intakes with metabolic syndrome. Int J Food Sci Nutr. https://doi.org/10.1080/09637486.2020.1719390
doi: 10.1080/09637486.2020.1719390
pubmed: 33043722
Motamed S, Ebrahimi M, Safarian M et al (2013) Micronutrient intake and the presence of the metabolic syndrome. Am J Med Sci 5:377–385. https://doi.org/10.4103/1947-2714.114171
doi: 10.4103/1947-2714.114171
Lind MV, Lauritzen L, Kristensen M et al (2019) Effect of folate supplementation on insulin sensitivity and type 2 diabetes: a meta-analysis of randomized controlled trials. Am J Clin Nutr 109:29–42. https://doi.org/10.1093/ajcn/nqy234
doi: 10.1093/ajcn/nqy234
pubmed: 30615110
Solini A, Santini E, Ferrannini E (2005) Effect of short-term folic acid supplementation on insulin sensitivity and inflammatory markers in overweight subjects. Int J Obes 30:1197–1202. https://doi.org/10.1038/sj.ijo.0803265
doi: 10.1038/sj.ijo.0803265
Talari HR, Rafiee M, Farrokhian A et al (2016) The effects of folate supplementation on carotid intima-media thickness and metabolic status in patients with metabolic syndrome. Ann Nutr Metab 69:41–50. https://doi.org/10.1159/000448295
doi: 10.1159/000448295
pubmed: 27450552
Wang W-W, Wang X-S, Zhang Z-R et al (2017) A meta-analysis of folic acid in combination with anti-hypertension drugs in patients with hypertension and hyperhomocysteinemia. Front Pharmacol 8:585. https://doi.org/10.3389/fphar.2017.00585
doi: 10.3389/fphar.2017.00585
pubmed: 28912716
pmcid: 5584015
Zhao JV, Schooling CM, Zhao JX (2018) The effects of folate supplementation on glucose metabolism and risk of type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Ann Epidemiol 28:249–257.e1. https://doi.org/10.1016/j.annepidem.2018.02.001
doi: 10.1016/j.annepidem.2018.02.001
pubmed: 29501221
Lucock M (2000) Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab 71:121–138. https://doi.org/10.1006/mgme.2000.3027
doi: 10.1006/mgme.2000.3027
pubmed: 11001804
Scaglione F, Panzavolta G (2014) Folate, folic acid and 5-methyltetrahydrofolate are not the same thing. Xenobiotica Fate Foreign Compd Biol Syst 44:480–488. https://doi.org/10.3109/00498254.2013.845705
doi: 10.3109/00498254.2013.845705
Martínez-González MA, Buil-Cosiales P, Corella D et al (2018) Cohort profile: design and methods of the PREDIMED-Plus randomized trial. Int J Epidemiol. https://doi.org/10.1093/ije/dyy225
doi: 10.1093/ije/dyy225
pubmed: 30428039
pmcid: 6280948
Salas-Salvadó J, Díaz-López A, Ruiz-Canela M et al (2018) Effect of a lifestyle intervention program with energy-restricted mediterranean diet and exercise on weight loss and cardiovascular risk factors: one-year results of the PREDIMED-Plus trial. Diabetes Care. https://doi.org/10.2337/dc18-0836
doi: 10.2337/dc18-0836
pubmed: 30389673
pmcid: 6245212
Alberti KGMM, Eckel RH, Grundy SM et al (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120:1640–1645. https://doi.org/10.1161/CIRCULATIONAHA.109.192644
doi: 10.1161/CIRCULATIONAHA.109.192644
pubmed: 19805654
Fernández-Ballart JD, Piñol JL, Zazpe I et al (2010) Relative validity of a semi-quantitative food frequency questionnaire in an elderly Mediterranean population of Spain. Br J Nutr 103:1808–1816. https://doi.org/10.1017/S0007114509993837
doi: 10.1017/S0007114509993837
pubmed: 20102675
Mataix J (2003) Tabla de composicion de alimentos [Food Composition Tables]. Universidad de Granada, Granada
Moreiras O, Carvajal A, Cabrera L, Cuadrado C (2005) Tablas de composición de alimentos “Food Composition Tables”. Ediciones Pirámide, Madrid
Willett WC, Howe GR, Kushi LH (1228S) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65:1220S–1228S. https://doi.org/10.1093/ajcn/65.4.1220S
doi: 10.1093/ajcn/65.4.1220S
pubmed: 9094926
European Food Safety Authority (2017) Dietary reference values for nutrients: summary report. EFSA Support Publ 14:e15121
Franks PW, Ekelund U, Brage S et al (2004) Does the association of habitual physical activity with the metabolic syndrome differ by level of cardiorespiratory fitness? Diabetes Care 27:1187–1193
doi: 10.2337/diacare.27.5.1187
Molina L, Sarmiento M, Peñafiel J et al (2017) Validation of the Regicor short physical activity questionnaire for the adult population. PLoS ONE 12:e0168148. https://doi.org/10.1371/journal.pone.0168148
doi: 10.1371/journal.pone.0168148
pubmed: 28085886
pmcid: 5234797
Schröder H, Fitó M, Estruch R et al (2011) A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women. J Nutr 141:1140–1145. https://doi.org/10.3945/jn.110.135566
doi: 10.3945/jn.110.135566
pubmed: 21508208
Willett WC (1998) Food-frequency methods. In: Willett WC (ed) Nutritional epidemiology, 2nd edn. Oxford University Press, New York, pp 74–100
doi: 10.1093/acprof:oso/9780195122978.003.05
Croux C, Dhaene G, Hoorelbeke D (2003) Robust standard errors for robust estimators. KU Leuven, Faculty of Economics and Business, Department of Economics, Leuven
Olza J, Martínez de Victoria E, Aranceta-Bartrina J et al (2019) Adequacy of critical nutrients affecting the quality of the Spanish diet in the ANIBES study. Nutrients 11:2328. https://doi.org/10.3390/nu11102328
doi: 10.3390/nu11102328
pmcid: 6835880
Bailey RL, Fulgoni VL, Taylor CL et al (2017) Correspondence of folate dietary intake and biomarker data. Am J Clin Nutr 105:1336–1343. https://doi.org/10.3945/ajcn.116.148775
doi: 10.3945/ajcn.116.148775
pubmed: 28446502
pmcid: 5445676
Steluti J, Selhub J, Paul L et al (2017) An overview of folate status in a population-based study from São Paulo, Brazil and the potential impact of 10 years of national folic acid fortification policy. Eur J Clin Nutr 71:1173–1178. https://doi.org/10.1038/ejcn.2017.60
doi: 10.1038/ejcn.2017.60
pubmed: 28488686
Viitasalo A, Lakka TA, Laaksonen DE et al (2014) Validation of metabolic syndrome score by confirmatory factor analysis in children and adults and prediction of cardiometabolic outcomes in adults. Diabetologia 57:940–949. https://doi.org/10.1007/s00125-014-3172-5
doi: 10.1007/s00125-014-3172-5
pubmed: 24463933
Kanagasabai T, Alkhalaqi K, Churilla JR et al (2019) The association between metabolic syndrome and serum concentrations of micronutrients, inflammation, and oxidative stress outside of the clinical reference ranges: a cross-sectional study. Metab Syndr Relat Disord 17:29–36. https://doi.org/10.1089/met.2018.0080
doi: 10.1089/met.2018.0080
pubmed: 30372368
Sheu WH-H, Chin H-ML, Lee W-J et al (2005) Prospective evaluation of folic acid supplementation on plasma homocysteine concentrations during weight reduction: a randomized, double-blinded, placebo-controlled study in obese women. Life Sci 76:2137–2145. https://doi.org/10.1016/j.lfs.2004.12.002
doi: 10.1016/j.lfs.2004.12.002
pubmed: 15826880
Akbari M, Tabrizi R, Lankarani KB et al (2018) The effects of folate supplementation on diabetes biomarkers among patients with metabolic diseases: a systematic review and meta-analysis of randomized controlled trials. Horm Metab Res Horm Stoffwechselforschung Horm Metab 50:93–105. https://doi.org/10.1055/s-0043-125148
doi: 10.1055/s-0043-125148
Wald DS, Wald NJ, Morris JK et al (2006) Folic acid, homocysteine, and cardiovascular disease: judging causality in the face of inconclusive trial evidence. BMJ 333:1114–1117. https://doi.org/10.1136/bmj.39000.486701.68
doi: 10.1136/bmj.39000.486701.68
pubmed: 17124224
pmcid: 1661741
Pravenec M, Kožich V, Krijt J et al (2013) Folate deficiency is associated with oxidative stress, increased blood pressure, and insulin resistance in spontaneously hypertensive rats. Am J Hypertens 26:135–140. https://doi.org/10.1093/ajh/hps015
doi: 10.1093/ajh/hps015
pubmed: 23382337
Song Y, Cook NR, Albert CM et al (2009) Effect of homocysteine-lowering treatment with folic acid and B vitamins on risk of type 2 diabetes in women: a randomized, controlled trial. Diabetes 58:1921–1928. https://doi.org/10.2337/db09-0087
doi: 10.2337/db09-0087
pubmed: 19491213
pmcid: 2712772
Ramos-Lopez O, Samblas M, Milagro FI et al (2018) Association of low dietary folate intake with lower CAMKK2 gene methylation, adiposity, and insulin resistance in obese subjects. Nutr Res N Y N 50:53–62. https://doi.org/10.1016/j.nutres.2017.11.007
doi: 10.1016/j.nutres.2017.11.007
Guay S-P, Voisin G, Brisson D et al (2012) Epigenome-wide analysis in familial hypercholesterolemia identified new loci associated with high-density lipoprotein cholesterol concentration. Epigenomics 4:623–639. https://doi.org/10.2217/epi.12.62
doi: 10.2217/epi.12.62
pubmed: 23244308
Suh E, Choi SW, Friso S (2016) One-carbon metabolism: an unsung hero for healthy aging. In: Malavolta M, Mocchegiani E (eds) Molecular basis of nutrition and aging. Elsevier, Amsterdam, pp 513–522
doi: 10.1016/B978-0-12-801816-3.00036-4
Selhub J (2002) Folate, vitamin B12 and vitamin B6 and one carbon metabolism. J Nutr Health Aging 6:39–42
pubmed: 11813080