Revealing the thermal oxidation stability and its mechanism of rice bran oil.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
24 08 2020
24 08 2020
Historique:
received:
21
04
2020
accepted:
23
07
2020
entrez:
26
8
2020
pubmed:
26
8
2020
medline:
26
8
2020
Statut:
epublish
Résumé
Although the stability of rice bran oil (RBO) has been showed on several studies, the factors which make it capable on maintaining its stability under thermal oxidation has not been sure yet. We hypothesized that its fatty acid composition [high composition of oleic acid (OA), lower composition of linoleic acid (LA) and α-linolenic acid (LnA)] and/or its antioxidant agents [γ-oryzanol (OZ)] and vitamin E [tocopherol (Toc), tocotrienol (T3)] might be the biggest factor. To prove the hypothesis, we thermally oxidized RBO under 40 °C for 17 days to mimic the harsh daily storage condition, and compared it with soybean oil (SO) and rapeseed oil (RPO) then monitoring their primary oxidation products [triacylglycerol hydroperoxide (TGOOH)] from easily oxidized fatty acid contained in triacylglycerol (TG) and the amount loss of antioxidant agents. As a result, RBO showed the lowest TGOOH/TG ratio, followed by RPO and SO. The superior stability RPO compared SO might occur due to because of the influence of the fatty acid profile (higher OA and lower LA). For RBO's case, besides its fatty acid profile, the existence of OZ and the synergistic effect of OZ and vitamin E might have a greater contribution in maintaining its stability under thermal oxidation.
Identifiants
pubmed: 32839472
doi: 10.1038/s41598-020-71020-y
pii: 10.1038/s41598-020-71020-y
pmc: PMC7445235
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
14091Références
Ghosh, M. Review on recent trends in rice bran oil processing. J. Am. Oil Chem. Soc. 84, 315–324. https://doi.org/10.1007/s11746-007-1047-3 (2007).
doi: 10.1007/s11746-007-1047-3
Rohman, A. Rice bran oil’s role in health and cooking. In Wheat and Rice in Disease Prevention and Health (eds Watson, R. R. et al.) 481–490 (Elsevier, Amsterdam, 2014). https://doi.org/10.1016/B978-0-12-401716-0.00037-4 .
doi: 10.1016/B978-0-12-401716-0.00037-4
Nayik, G. A. & Muzaffar, K. Future edible oil of india: Rice bran oil—The wonder oil. SM J. Food Nutr. Disord. 1, 1007 (2015).
Fan, H. Y., Syarifudin, M. S., Hasmadi, H. & Chew, H. M. Frying stability of rice bran oil and palm olein. Int. Food Res. J. 20(1), 403–407 (2013).
Kochhar, S. P. & Henry, C. J. K. Oxidative stability and shelf-life evaluation of selected culinary oils. Int. J. Food Sci. Nutr. 60, 289–296. https://doi.org/10.1080/09637480903103774 (2009).
doi: 10.1080/09637480903103774
pubmed: 19634067
Hemalatha, S. & Ghafoorunissa. Sesame lignans enhance the thermal stability of edible vegetable oils. Food Chem. 105, 1076–1085. https://doi.org/10.1016/j.foodchem.2007.05.023 (2007).
doi: 10.1016/j.foodchem.2007.05.023
Santos, J. C. O. et al. Thermoanalytical, kinetic and rheological parameters of commercial edible vegetable oils. J. Therm. Anal. Calorim. 75, 419–428. https://doi.org/10.1023/B:JTAN.0000027128.62480.db (2004).
doi: 10.1023/B:JTAN.0000027128.62480.db
Howard, J. A. & Ingold, K. U. Absolute rate constants for hydrocarbon autoxidation. VI. Alkyl aromatic and olefinic hydrocarbons. Can. J. Chem. 45, 793–802. https://doi.org/10.1139/v67-132 (1967).
doi: 10.1139/v67-132
Kamal-Eldin, A. Effect of fatty acids and tocopherols on the oxidative stability of vegetable oils. Eur. J. Lipid Sci. Technol. 108, 1051–1061. https://doi.org/10.1002/ejlt.200600090 (2006).
doi: 10.1002/ejlt.200600090
Neff, W. E. et al. Effect of triacylglycerol composition and structures on oxidative stability of oils from selected soybean germplasm. J. Am. Oil Chem. Soc. 69, 111–118. https://doi.org/10.1007/BF02540559 (1992).
doi: 10.1007/BF02540559
O’Keefe, S. F., Wiley, V. A. & Knauft, D. A. Comparison of oxidative stability of high- and normal-oleic peanut oils. J. Am. Oil Chem. Soc. 70, 489–492. https://doi.org/10.1007/BF02542581 (1993).
doi: 10.1007/BF02542581
Warner, K. & Knowlton, S. Frying quality and oxidative stability of high-oleic corn oils. J. Am. Oil Chem. Soc. 74(10), 1317–1322 (1997).
doi: 10.1007/s11746-997-0063-7
Wang, T., Hicks, K. B. & Moreau, R. Antioxidant activity of phytosterols, oryzanol, and other phytosterol conjugates. J. Am. Oil Chem. Soc. 79, 1201–1206. https://doi.org/10.1007/s11746-002-0628-x (2002).
doi: 10.1007/s11746-002-0628-x
Kato, S. et al. Determination of triacylglycerol oxidation mechanisms in canola oil using liquid chromatography–tandem mass spectrometry. npj Sci. Food https://doi.org/10.1038/s41538-017-0009-x (2018).
doi: 10.1038/s41538-017-0009-x
pubmed: 31304251
pmcid: 6550225
Ikeda, K., Oike, Y., Shimizu, T. & Taguchi, R. Global analysis of triacylglycerols including oxidized molecular species by reverse-phase high resolution LC/ESI-QTOF MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 877, 2639–2647. https://doi.org/10.1016/j.jchromb.2009.03.047 (2009).
doi: 10.1016/j.jchromb.2009.03.047
Kato, S. et al. Evaluation of the mechanisms of mayonnaise phospholipid oxidation. J. Oleo Sci 66, 369–374. https://doi.org/10.5650/jos.ess16187 (2017).
doi: 10.5650/jos.ess16187
pubmed: 28239061
Ito, J., Mizuochi, S., Nakagawa, K., Kato, S. & Miyazawa, T. Tandem mass spectrometry analysis of linoleic and arachidonic acid hydroperoxides via promotion of alkali metal adduct formation. Anal. Chem. 87, 4980–4987. https://doi.org/10.1021/acs.analchem.5b00851 (2015).
doi: 10.1021/acs.analchem.5b00851
pubmed: 25874840
Shimizu, N. et al. Mass spectrometric discrimination of squalene monohydroperoxide isomers. J. Oleo Sci. 66, 227–234. https://doi.org/10.5650/jos.ess16159 (2017).
doi: 10.5650/jos.ess16159
pubmed: 28190805
Nakagawa, K., Kato, S. & Miyazawa, T. Determination of phosphatidylcholine hydroperoxide (PCOOH) as a marker of membrane lipid peroxidation. J. Nutr. Sci. Vitaminol. 61, S78–S80. https://doi.org/10.3177/jnsv.61.S78 (2015).
doi: 10.3177/jnsv.61.S78
pubmed: 26598897
Warner, K. & Mounts, T. L. Frying stability of soybean and canola oils with modified fatty acid compositions. J. Am. Oil Chem. Soc. 70, 983–988. https://doi.org/10.1007/BF02543024 (1993).
doi: 10.1007/BF02543024
Huang, C. C. J., Xu, Z. & Godber, J. S. Potential antioxidant activity of γ-oryzanol in rice bran as determined using an in vitro mouse lymph axillary endothelial cell model. Cereal Chem. 86, 679–684. https://doi.org/10.1094/CCHEM-86-6-0679 (2009).
doi: 10.1094/CCHEM-86-6-0679
Sunil, L., Srinivas, P., Prasanth Kumar, P. K. & Gopala Krishna, A. G. Oryzanol as natural antioxidant for improving sunflower oil stability. J. Food Sci. Technol. 52, 3291–3299. https://doi.org/10.1007/s13197-014-1385-8 (2015).
doi: 10.1007/s13197-014-1385-8
pubmed: 26028710
Yamauchi, R. Vitamin E: Mechanism of its antioxidant activity. Food. Sci. Technol. Int. Tokyo. 3, 301–309. https://doi.org/10.3136/fsti9596t9798.3.301 (1997).
doi: 10.3136/fsti9596t9798.3.301
Xu, Z., Hua, N. & Samuel Godber, J. Antioxidant activity of tocopherols, tocotrienols, and γ-oryzanol components from rice bran against cholesterol oxidation accelerated by 2,2′-azobis(2-methylpropionamidine) dihydrochloride. J. Agric. Food Chem. 49, 2077–2081. https://doi.org/10.1021/jf0012852 (2001).
doi: 10.1021/jf0012852
Frankel, E. N. Chemistry of free radical and singlet oxidation of lipids. Prog. Lipid Res. 23, 197–221. https://doi.org/10.1016/0163-7827(84)90011-0 (1985).
doi: 10.1016/0163-7827(84)90011-0
Zielinski, Z. A. M. & Pratt, D. A. Lipid peroxidation: Kinetics, mechanisms, and products. J. Org. Chem. 82, 2817–2825. https://doi.org/10.1021/acs.joc.7b00152 (2017).
doi: 10.1021/acs.joc.7b00152
pubmed: 28248497
Cosgrove, J. P., Church, D. F. & Pryor, W. A. The kinetics of the autoxidation of polyunsaturated fatty acids. Lipids 22, 299–304. https://doi.org/10.1007/bf02533996 (1987).
doi: 10.1007/bf02533996
pubmed: 3600206
Kamal-Eldin, A., Mäkinen, M. & Lampi, A.-M. The challenging contribution of hydroperoxides to the lipid oxidation mechanism. In Lipid Oxidation Pathways (ed. Kamal-Eldin, A.) 1–36 (AOCS Publishing, New York, 2003).
doi: 10.1201/9781439822098
Soto-Jover, S., Boluda-Aguilar, M. & López-Gómez, A. Influence of heating on stability of γ-oryzanol in gluten-free ready meals. LWT - Food Sci. Technol. 65, 25–31. https://doi.org/10.1016/j.lwt.2015.07.058 (2016).
doi: 10.1016/j.lwt.2015.07.058
Islam, M. S. et al. Antioxidant, free radical-scavenging, and NF-kappaB-inhibitory activities of phytosteryl ferulates: structure-activity studies. J. Pharmacol. Sci. 111, 328–337. https://doi.org/10.1254/jphs.09146fp (2009).
doi: 10.1254/jphs.09146fp
pubmed: 19942803
Chotimarkorn, C. & Silalai, N. Addition of rice bran oil to soybean oil during frying increases the oxidative stability of the fried dough from rice flour during storage. Food Res. Int. 41, 308–317. https://doi.org/10.1016/j.foodres.2007.12.007 (2008).
doi: 10.1016/j.foodres.2007.12.007
Japan Oil Chemists’ Society. 2.5.2. Peroxide value. in The JOCS Standard Methods for the Analysis of Fats, Oils and Related Materials (ed. JOCS) 1–3 (JOCS, 2013).