Links between central CB1-receptor availability and peripheral endocannabinoids in patients with first episode psychosis.
Journal
NPJ schizophrenia
ISSN: 2334-265X
Titre abrégé: NPJ Schizophr
Pays: United States
ID NLM: 101657919
Informations de publication
Date de publication:
26 Aug 2020
26 Aug 2020
Historique:
received:
28
01
2020
accepted:
07
07
2020
entrez:
28
8
2020
pubmed:
28
8
2020
medline:
28
8
2020
Statut:
epublish
Résumé
There is an established, link between psychosis and metabolic abnormalities, such as altered glucose metabolism and dyslipidemia, which often precede the initiation of antipsychotic treatment. It is known that obesity-associated metabolic disorders are promoted by activation of specific cannabinoid targets (endocannabinoid system (ECS)). Our recent data suggest that there is a change in the circulating lipidome at the onset of first episode psychosis (FEP). With the aim of characterizing the involvement of the central and peripheral ECSs, and their mutual associations; here, we performed a combined neuroimaging and metabolomic study in patients with FEP and healthy controls (HC). Regional brain cannabinoid receptor type 1 (CB1R) availability was quantified in two, independent samples of patients with FEP (n = 20 and n = 8) and HC (n = 20 and n = 10), by applying three-dimensional positron emission tomography, using two radiotracers, [
Identifiants
pubmed: 32848142
doi: 10.1038/s41537-020-00110-7
pii: 10.1038/s41537-020-00110-7
pmc: PMC7450081
doi:
Types de publication
Journal Article
Langues
eng
Pagination
21Subventions
Organisme : European Commission (EC)
ID : 602478
Organisme : European Commission (EC)
ID : 602478
Références
Saha, S., Chant, D. & McGrath, J. A systematic review of mortality in schizophrenia: is the differential mortality gap worsening over time? Arch. Gen. Psychiatry 64, 1123–1131 (2007).
pubmed: 17909124
Ringen, P. A., Engh, J. A., Birkenaes, A. B., Dieset, I. & Andreassen, O. A. Increased mortality in schizophrenia due to cardiovascular disease−a non-systematic review of epidemiology, possible causes, and interventions. Front. Psychiatry 5, 137 (2014).
pubmed: 25309466
pmcid: 4175996
Mukherjee, S., Schnur, D. B. & Reddy, R. Family history of type 2 diabetes in schizophrenic patients. Lancet 1, 495 (1989).
pubmed: 2563862
Arango, C., Bobes, J., Kirkpatrick, B., Garcia-Garcia, M. & Rejas, J. Psychopathology, coronary heart disease and metabolic syndrome in schizophrenia spectrum patients with deficit versus non-deficit schizophrenia: findings from the CLAMORS study. Eur. Neuropsychopharmacol. 21, 867–875 (2011).
pubmed: 21477998
Pillinger, T. et al. Impaired glucose homeostasis in first-episode schizophrenia: a systematic review and meta-analysis. JAMA Psychiatry 74, 261–269 (2017).
pubmed: 28097367
pmcid: 6352957
Pillinger, T., Beck, K., Stubbs, B. & Howes, O. D. Cholesterol and triglyceride levels in first-episode psychosis: systematic review and meta-analysis. Br. J. Psychiatry 211, 339–349 (2017).
pubmed: 28982658
pmcid: 5709673
Covell, N. H., Weissman, E. M. & Essock, S. M. Weight gain with clozapine compared to first generation antipsychotic medications. Schizophr. Bull. 30, 229–240 (2004).
pubmed: 15279042
Liu, Z. et al. Metformin for treatment of clozapine-induced weight gain in adult patients with schizophrenia: a meta-analysis. Shanghai Arch. Psychiatry 27, 331–340 (2015).
pubmed: 27199524
pmcid: 4858504
Suvitaival, T. et al. Serum metabolite profile associates with the development of metabolic co-morbidities in first-episode psychosis. Transl. Psychiatry 6, e951 (2016).
pubmed: 27845774
pmcid: 5314133
Newell, K. A., Deng, C. & Huang, X. F. Increased cannabinoid receptor density in the posterior cingulate cortex in schizophrenia. Exp. Brain Res. 172, 556–560 (2006).
pubmed: 16710682
Koethe, D. et al. Anandamide elevation in cerebrospinal fluid in initial prodromal states of psychosis. Br. J. Psychiatry 194, 371–372 (2009).
pubmed: 19336792
De Marchi, N. et al. Endocannabinoid signalling in the blood of patients with schizophrenia. Lipids Health Dis. 2, 5 (2003).
pubmed: 12969514
pmcid: 194767
Parolaro, D., Realini, N., Vigano, D., Guidali, C. & Rubino, T. The endocannabinoid system and psychiatric disorders. Exp. Neurol. 224, 3–14 (2010).
pubmed: 20353783
Leweke, F. M. et al. Anandamide levels in cerebrospinal fluid of first-episode schizophrenic patients: impact of cannabis use. Schizophr. Res. 94, 29–36 (2007).
pubmed: 17566707
Bioque, M. et al. Peripheral endocannabinoid system dysregulation in first-episode psychosis. Neuropsychopharmacology 38, 2568–2577 (2013).
pubmed: 23822951
pmcid: 3828529
Leweke, F. M., Giuffrida, A., Wurster, U., Emrich, H. M. & Piomelli, D. Elevated endogenous cannabinoids in schizophrenia. Neuroreport 10, 1665–1669 (1999).
pubmed: 10501554
Giuffrida, A. et al. Cerebrospinal anandamide levels are elevated in acute schizophrenia and are inversely correlated with psychotic symptoms. Neuropsychopharmacology 29, 2108–2114 (2004).
pubmed: 15354183
Iannotti, F. A., Di Marzo, V. & Petrosino, S. Endocannabinoids and endocannabinoid-related mediators: targets, metabolism and role in neurological disorders. Prog. Lipid Res. 62, 107–128 (2016).
pubmed: 26965148
Matias, I. & Di Marzo, V. Endocannabinoids and the control of energy balance. Trends Endocrinol. Metab. 18, 27–37 (2007).
pubmed: 17141520
Di Marzo, V., Piscitelli, F. & Mechoulam, R. Cannabinoids and endocannabinoids in metabolic disorders with focus on diabetes. Handb. Exp. Pharmacol. 203, 75–104 (2011).
Lo Verme, J. et al. Regulation of food intake by oleoylethanolamide. Cell Mol. Life Sci. 62, 708–716 (2005).
pubmed: 15770421
Fu, J., Oveisi, F., Gaetani, S., Lin, E. & Piomelli, D. Oleoylethanolamide, an endogenous PPAR-alpha agonist, lowers body weight and hyperlipidemia in obese rats. Neuropharmacology 48, 1147–1153 (2005).
pubmed: 15910890
Fu, J. et al. Food intake regulates oleoylethanolamide formation and degradation in the proximal small intestine. J. Biol. Chem. 282, 1518–1528 (2007).
pubmed: 17121838
Desfossés, J., Stip, E., Bentaleb, L. A. & Potvin, S. Endocannabinoids and schizophrenia. Pharmaceuticals 3, 3101–3126 (2010).
pmcid: 4034083
Silvestri, C. & Di Marzo, V. The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab. 17, 475–490 (2013).
pubmed: 23562074
Pertwee, R. G. The pharmacology of cannabinoid receptors and their ligands: an overview. Int. J. Obes. 30, S13–S18 (2006). Suppl 1.
Frank, E. et al. Platform for systems medicine research and diagnostic applications in psychotic disorders-The METSY project. Eur. Psychiatry 50, 40–46 (2018).
pubmed: 29361398
Borgan, F. et al. The effects of cannabinoid 1 receptor compounds on memory: a meta-analysis and systematic review across species. Psychopharmacology (Berl.) 236, 3257–3270 (2019).
Hungund, B. L. et al. Upregulation of CB1 receptors and agonist-stimulated [35S]GTPgammaS binding in the prefrontal cortex of depressed suicide victims. Mol. Psychiatry 9, 184–190 (2004).
pubmed: 14966476
Neumeister, A. et al. Elevated brain cannabinoid CB1 receptor availability in post-traumatic stress disorder: a positron emission tomography study. Mol. Psychiatry 18, 1034–1040 (2013).
pubmed: 23670490
pmcid: 3752332
Hietala, J. 42.4 The endocannabinoid system in first-episode psychosis. Schizophr. Bull. 44, S69–S69 (2018). (Suppl 1).
pmcid: 5888106
Ranganathan, M. et al. Reduced brain cannabinoid receptor availability in schizophrenia. Biol. Psychiatry 79, 997–1005 (2016).
pubmed: 26432420
Borgan, F. et al. In vivo availability of cannabinoid 1 receptor levels in patients with first-episode psychosis. JAMA Psychiatry 76, 1074–1084 (2019).
pmcid: 6613300
Minichino, A. et al. Measuring disturbance of the endocannabinoid system in psychosis: a systematic review and meta-analysis. JAMA Psychiatry 76, 914–923 (2019).
pmcid: 6552109
Kaddurah-Daouk, R. et al. Metabolomic mapping of atypical antipsychotic effects in schizophrenia. Mol. Psychiatry 12, 934–945 (2007).
pubmed: 17440431
Oresic, M. et al. Metabolome in schizophrenia and other psychotic disorders: a general population-based study. Genome Med. 3, 19 (2011).
pubmed: 21429189
pmcid: 3092104
Holmes, E. et al. Metabolic profiling of CSF: evidence that early intervention may impact on disease progression and outcome in schizophrenia. PLoS Med. 3, e327 (2006).
pubmed: 16933966
pmcid: 1551919
Quinones, M. P. & Kaddurah-Daouk, R. Metabolomics tools for identifying biomarkers for neuropsychiatric diseases. Neurobiol. Dis. 35, 165–176 (2009).
pubmed: 19303440
Oresic, M. et al. Metabolome in progression to Alzheimer’s disease. Transl. Psychiatry 1, e57 (2011).
pubmed: 22832349
pmcid: 3309497
Bogdanov, M. et al. Metabolomic profiling to develop blood biomarkers for Parkinson’s disease. Brain 131, 389–396 (2008). (Pt 2).
pubmed: 18222993
Foley, D. L. & Morley, K. I. Systematic review of early cardiometabolic outcomes of the first treated episode of psychosis. Arch. Gen. Psychiatry 68, 609–616 (2011).
pubmed: 21300937
Henderson, D. C., Vincenzi, B., Andrea, N. V., Ulloa, M. & Copeland, P. M. Pathophysiological mechanisms of increased cardiometabolic risk in people with schizophrenia and other severe mental illnesses. Lancet Psychiatry 2, 452–464 (2015).
pubmed: 26360288
Di Marzo, V. The endocannabinoid system in obesity and type 2 diabetes. Diabetologia 51, 1356–1367 (2008).
pubmed: 18563385
Jourdan, T., Godlewski, G. & Kunos, G. Endocannabinoid regulation of beta-cell functions: implications for glycaemic control and diabetes. Diabetes Obes. Metab. 18, 549–557 (2016).
pubmed: 26880114
pmcid: 5045244
Leweke, F. M. et al. Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl. Psychiatry 2, e94–e94 (2012).
pubmed: 22832859
pmcid: 3316151
Fanelli, F. et al. Estimation of reference intervals of five endocannabinoids and endocannabinoid related compounds in human plasma by two dimensional-LC/MS/MS. J. Lipid Res. 53, 481–493 (2012).
pubmed: 22172516
pmcid: 3276471
Mechoulam, R., Fride, E. & Di Marzo, V. Endocannabinoids. Eur. J. Pharm. 359, 1–18 (1998).
Cravatt, B. F. et al. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384, 83 (1996).
pubmed: 8900284
Dinh, T. P. et al. Brain monoglyceride lipase participating in endocannabinoid inactivation. PNAS 99, 10819 (2002).
pubmed: 12136125
Rask-Andersen, M., Olszewski, P. K., Levine, A. S. & Schiöth, H. B. Molecular mechanisms underlying anorexia nervosa: focus on human gene association studies and systems controlling food intake. Brain Res. Rev. 62, 147–164 (2010).
pubmed: 19931559
Engeli, S. et al. Activation of the peripheral endocannabinoid system in human obesity. Diabetes 54, 2838–2843 (2005).
pubmed: 16186383
pmcid: 2228268
Utevsky, A. V., Smith, D. V. & Huettel, S. A. Precuneus is a functional core of the default-mode network. J. Neurosci. 34, 932–940 (2014).
pubmed: 24431451
pmcid: 3891968
Leech, R., Braga, R. & Sharp, D. J. Echoes of the brain within the posterior cingulate cortex. J. Neurosci. 32, 215–222 (2012).
pubmed: 22219283
pmcid: 6621313
Rikandi, E. et al. Connectivity of the precuneus-posterior cingulate cortex with the anterior cingulate cortex-medial prefrontal cortex differs consistently between control subjects and first-episode psychosis patients during a movie stimulus. Schizophr. Res. 199, 235–242 (2018).
pubmed: 29588124
DiPatrizio, N. V. & Piomelli, D. The thrifty lipids: endocannabinoids and the neural control of energy conservation. Trends Neurosci. 35, 403–411 (2012).
pubmed: 22622030
pmcid: 3744874
Boorman, E., Zajkowska, Z., Ahmed, R., Pariante, C. M. & Zunszain, P. A. Crosstalk between endocannabinoid and immune systems: a potential dysregulation in depression? Psychopharmacology (Berl.) 233, 1591–1604 (2016).
Narayan, S., Head, S. R., Gilmartin, T. J., Dean, B. & Thomas, E. A. Evidence for disruption of sphingolipid metabolism in schizophrenia. J. Neurosci. Res. 87, 278–288 (2009).
pubmed: 18683247
pmcid: 2606914
Bioque, M. et al. Peripheral endocannabinoid system dysregulation in first-episode psychosis. Neuropsychopharmacology 38, 2568–2577 (2013).
pubmed: 23822951
pmcid: 3828529
Centonze, D., Battistini, L. & Maccarrone, M. The endocannabinoid system in peripheral lymphocytes as a mirror of neuroinflammatory diseases. Curr. Pharm. Des. 14, 2370–2342. (2008).
pubmed: 18781987
Westerbacka, J. et al. Splanchnic balance of free fatty acids, endocannabinoids, and lipids in subjects with nonalcoholic fatty liver disease. Gastroenterology 139, 1961–1971 e1961 (2010).
pubmed: 20600015
Oresic, M. et al. Prediction of non-alcoholic fatty-liver disease and liver fat content by serum molecular lipids. Diabetologia 56, 2266–2274 (2013).
pubmed: 23824212
pmcid: 3764317
Osei-Hyiaman, D. et al. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J. Clin. Invest. 115, 1298–1305 (2005).
pubmed: 15864349
pmcid: 1087161
Woodhams, S. G., Sagar, D. R., Burston, J. J. & Chapman, V. The role of the endocannabinoid system in pain. Handb. Exp. Pharm. 227, 119–143 (2015).
Guzmán, M. et al. Oleoylethanolamide stimulates lipolysis by activating the nuclear receptor peroxisome proliferator-activated receptor α (PPAR-α). J. Biol. Chem. 279, 27849–27854 (2004).
pubmed: 15123613
Fu, J. et al. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature 425, 90–93 (2003).
pubmed: 12955147
Provensi, G. et al. Satiety factor oleoylethanolamide recruits the brain histaminergic system to inhibit food intake. Proc. Natl Acad. Sci. USA 111, 11527–11532 (2014).
pubmed: 25049422
Tam, J. et al. The therapeutic potential of targeting the peripheral endocannabinoid/CB1 receptor system. Eur. J. Intern. Med. 49, 23–29 (2018).
pubmed: 29336868