Multiplexed single-cell transcriptional response profiling to define cancer vulnerabilities and therapeutic mechanism of action.
Antineoplastic Agents
/ pharmacology
Base Sequence
Cell Line, Tumor
Cell Survival
/ genetics
Gene Expression Profiling
/ methods
Gene Expression Regulation, Neoplastic
/ drug effects
Humans
Models, Statistical
Neoplasms
/ drug therapy
Polymorphism, Single Nucleotide
Pyridones
/ pharmacology
Pyrimidinones
/ pharmacology
Single-Cell Analysis
/ methods
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
27 08 2020
27 08 2020
Historique:
received:
07
02
2020
accepted:
26
06
2020
entrez:
29
8
2020
pubmed:
29
8
2020
medline:
25
9
2020
Statut:
epublish
Résumé
Assays to study cancer cell responses to pharmacologic or genetic perturbations are typically restricted to using simple phenotypic readouts such as proliferation rate. Information-rich assays, such as gene-expression profiling, have generally not permitted efficient profiling of a given perturbation across multiple cellular contexts. Here, we develop MIX-Seq, a method for multiplexed transcriptional profiling of post-perturbation responses across a mixture of samples with single-cell resolution, using SNP-based computational demultiplexing of single-cell RNA-sequencing data. We show that MIX-Seq can be used to profile responses to chemical or genetic perturbations across pools of 100 or more cancer cell lines. We combine it with Cell Hashing to further multiplex additional experimental conditions, such as post-treatment time points or drug doses. Analyzing the high-content readout of scRNA-seq reveals both shared and context-specific transcriptional response components that can identify drug mechanism of action and enable prediction of long-term cell viability from short-term transcriptional responses to treatment.
Identifiants
pubmed: 32855387
doi: 10.1038/s41467-020-17440-w
pii: 10.1038/s41467-020-17440-w
pmc: PMC7453022
doi:
Substances chimiques
Antineoplastic Agents
0
Pyridones
0
Pyrimidinones
0
trametinib
33E86K87QN
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
4296Subventions
Organisme : NCI NIH HHS
ID : K08 CA218420
Pays : United States
Organisme : NCI NIH HHS
ID : U01 CA250549
Pays : United States
Organisme : Howard Hughes Medical Institute
Pays : United States
Références
Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576.e16 (2017).
pubmed: 28753430
pmcid: 5667678
doi: 10.1016/j.cell.2017.06.010
Meyers, R. M. et al. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat. Genet. 49, 1779–1784 (2017).
pubmed: 29083409
pmcid: 5709193
doi: 10.1038/ng.3984
McDonald, E. R. et al. Project DRIVE: a compendium of cancer dependencies and synthetic lethal relationships uncovered by large-scale, deep RNAi screening. Cell 170, 577.e10–592.e10 (2017).
doi: 10.1016/j.cell.2017.07.005
Iorio, F. et al. A landscape of pharmacogenomic interactions in cancer. Cell 166, 740–754 (2016).
pubmed: 27397505
pmcid: 4967469
doi: 10.1016/j.cell.2016.06.017
Behan, F. M. et al. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature 568, 511–516 (2019).
pubmed: 30971826
doi: 10.1038/s41586-019-1103-9
Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).
pubmed: 22460905
pmcid: 3320027
doi: 10.1038/nature11003
Garnett, M. J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570–575 (2012).
pubmed: 22460902
pmcid: 3349233
doi: 10.1038/nature11005
Dixit, A. et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).
pubmed: 27984732
pmcid: 5181115
doi: 10.1016/j.cell.2016.11.038
Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867.e21–1882.e21 (2016).
doi: 10.1016/j.cell.2016.11.048
Subramanian, A. et al. A next generation Connectivity Map: L1000 platform and the first 1,000,000 profiles. Cell 171, 1437.e17–1452.e17 (2017).
doi: 10.1016/j.cell.2017.10.049
Norman, T. M. et al. Exploring genetic interaction manifolds constructed from rich single-cell phenotypes. Science 365, 786–793 (2019).
pubmed: 31395745
pmcid: 6746554
doi: 10.1126/science.aax4438
Lamb, J. et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).
pubmed: 17008526
doi: 10.1126/science.1132939
Lamb, J. et al. A mechanism of cyclin D1 action encoded in the patterns of gene expression in human cancer. Cell 114, 323–334 (2003).
pubmed: 12914697
doi: 10.1016/S0092-8674(03)00570-1
Bush, E. C. et al. PLATE-Seq for genome-wide regulatory network analysis of high-throughput screens. Nat. Commun. 8, 105 (2017).
pubmed: 28740083
pmcid: 5524642
doi: 10.1038/s41467-017-00136-z
Ye, C. et al. DRUG-seq for miniaturized high-throughput transcriptome profiling in drug discovery. Nat. Commun. 9, 4307 (2018).
pubmed: 30333485
pmcid: 6192987
doi: 10.1038/s41467-018-06500-x
Basu, A. et al. An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell 154, 1151–1161 (2013).
pubmed: 23993102
pmcid: 3954635
doi: 10.1016/j.cell.2013.08.003
Corsello, S. M. et al. Discovering the anticancer potential of non-oncology drugs by systematic viability profiling. Nat. Cancer https://doi.org/10.1038/s43018-019-0018-6 (2020).
Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).
pubmed: 26000487
pmcid: 4441768
doi: 10.1016/j.cell.2015.04.044
Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).
pubmed: 26000488
pmcid: 4481139
doi: 10.1016/j.cell.2015.05.002
Yu, C. et al. High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines. Nat. Biotechnol. 34, 419–423 (2016).
pubmed: 26928769
pmcid: 5508574
doi: 10.1038/nbt.3460
Srivatsan, S. R. et al. Massively multiplex chemical transcriptomics at single cell resolution. Science 367, 45–51 (2020).
Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36, 89–94 (2018).
pubmed: 29227470
doi: 10.1038/nbt.4042
Stoeckius, M. et al. Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol. 19, 224 (2018).
pubmed: 30567574
pmcid: 6300015
doi: 10.1186/s13059-018-1603-1
Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).
pubmed: 14704432
doi: 10.1126/science.1092472
Shi-Lin, D., Yuan, X., Zhan, S., Luo-Jia, T. & Chao-Yang, T. Trametinib, a novel MEK kinase inhibitor, suppresses lipopolysaccharide-induced tumor necrosis factor (TNF)-α production and endotoxin shock. Biochem. Biophys. Res. Commun. 458, 667–673 (2015).
pubmed: 25684183
doi: 10.1016/j.bbrc.2015.01.160
Lulli, D., Carbone, M. L. & Pastore, S. The MEK inhibitors trametinib and cobimetinib induce a type I interferon response in human keratinocytes. Int. J. Mol. Sci. 18, 2227 (2017).
Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569, 503–508 (2019).
pubmed: 31068700
pmcid: 6697103
doi: 10.1038/s41586-019-1186-3
McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://arxiv.org/abs/1802.03426 (2018).
Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).
pubmed: 27124452
pmcid: 4944528
doi: 10.1126/science.aad0501
King, C. et al. LY2606368 causes replication catastrophe and antitumor effects through CHK1-dependent mechanisms. Mol. Cancer Ther. 14, 2004–2013 (2015).
pubmed: 26141948
doi: 10.1158/1535-7163.MCT-14-1037
Kinker, G. S. et al. Pan-cancer single cell RNA-seq uncovers recurring programs of cellular heterogeneity. Preprint at https://www.biorxiv.org/content/10.1101/807552v1 (2019).
Shin, D., Lee, W., Lee, J. H. & Bang, D. Multiplexed single-cell RNA-seq via transient barcoding for simultaneous expression profiling of various drug perturbations. Sci. Adv. 5, eaav2249 (2019).
pubmed: 31106268
pmcid: 6520024
doi: 10.1126/sciadv.aav2249
Lim, C. P., Jain, N. & Cao, X. Stress-induced immediate-early gene, egr-1, involves activation of p38/JNK1. Oncogene 16, 2915–2926 (1998).
pubmed: 9671412
doi: 10.1038/sj.onc.1201834
Huang, Y., McCarthy, D. J. & Stegle, O. Vireo: Bayesian demultiplexing of pooled single-cell RNA-seq data without genotype reference. Genome Biol. 20, 273 https://doi.org/10.1186/s13059-019-1865-2 (2019).
Xu, J. et al. Genotype-free demultiplexing of pooled single-cell RNA-seq. Genome Biol. 20, 290 (2019).
pubmed: 31856883
pmcid: 6921391
doi: 10.1186/s13059-019-1852-7
Szalai, B. et al. Signatures of cell death and proliferation in perturbation transcriptomics data-from confounding factor to effective prediction. Nucleic Acids Res. 47, 10010–10026 (2019).
pubmed: 31552418
pmcid: 6821211
doi: 10.1093/nar/gkz805
Jones, A., Tsherniak, A. & McFarland, J. Post-perturbational transcriptional signatures of cancer cell line vulnerabilities. Preprint at https://www.biorxiv.org/content/10.1101/2020.03.04.976217v1 (2020).
Kodack, D. P. et al. Primary patient-derived cancer cells and their potential for personalized cancer patient care. Cell Rep. 21, 3298–3309 (2017).
pubmed: 29241554
pmcid: 5745232
doi: 10.1016/j.celrep.2017.11.051
Tseng, Y.-Y. & Boehm, J. S. From cell lines to living biosensors: new opportunities to prioritize cancer dependencies using ex vivo tumor cultures. Curr. Opin. Genet. Dev. 54, 33–40 (2019).
pubmed: 30928774
doi: 10.1016/j.gde.2019.02.007
Li, B. et al. Cumulus: a cloud-based data analysis framework for large-scale single-cell and single-nucleus RNA-seq. Preprint at https://www.biorxiv.org/content/10.1101/823682v1 (2019).
Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. Preprint at https://arxiv.org/abs/1207.3907 (2012).
Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).
pubmed: 20808728
pmcid: 2929880
doi: 10.18637/jss.v033.i01
Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. R J. 8, 289–317 (2016).
pubmed: 27818791
pmcid: 5096736
doi: 10.32614/RJ-2016-021
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
pubmed: 29608179
pmcid: 6700744
doi: 10.1038/nbt.4096
Broad DepMap. DepMap 19Q3 Public. Figshare https://doi.org/10.6084/m9.figshare.9201770.v3 (2019).
Crowell, H. L. et al. On the discovery of population-specific state transitions from multi-sample multi-condition single-cell RNA sequencing data. Preprint at https://www.biorxiv.org/content/10.1101/713412v1 (2019).
Lun, A. T. L. & Marioni, J. C. Overcoming confounding plate effects in differential expression analyses of single-cell RNA-seq data. Biostatistics 18, 451–464 (2017).
pubmed: 28334062
pmcid: 5862359
doi: 10.1093/biostatistics/kxw055
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
pubmed: 19910308
doi: 10.1093/bioinformatics/btp616
Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).
pubmed: 24485249
pmcid: 4053721
doi: 10.1186/gb-2014-15-2-r29
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
pubmed: 25605792
pmcid: 4402510
doi: 10.1093/nar/gkv007
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 57, 289–300 (1995).
Lun, A. T. L., Chen, Y. & Smyth, G. K. It’s DE-licious: a recipe for differential expression analyses of RNA-seq experiments using quasi-likelihood methods in edgeR. Methods Mol. Biol. 1418, 391–416 (2016).
pubmed: 27008025
doi: 10.1007/978-1-4939-3578-9_19
Soneson, C. & Robinson, M. D. Bias, robustness and scalability in single-cell differential expression analysis. Nat. Methods 15, 255–261 (2018).
Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011).
pubmed: 21546393
pmcid: 3106198
doi: 10.1093/bioinformatics/btr260
Janitza, S., Celik, E. & Boulesteix, A.-L. A computationally fast variable importance test for random forests for high-dimensional data. Adv. Data Anal. Classif. https://doi.org/10.1007/s11634-016-0276-4 (2016).
Gaublomme, J. T. et al. Nuclei multiplexing with barcoded antibodies for single-nucleus genomics. Nat. Commun. 10, 2907 (2019).
pubmed: 31266958
pmcid: 6606589
doi: 10.1038/s41467-019-10756-2
Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).
pubmed: 31870423
pmcid: 6927181
doi: 10.1186/s13059-019-1874-1
Cancer Data Science. MIX-seq data. Figshare. Dataset at https://doi.org/10.6084/m9.figshare.10298696.v1 (2019).