Melatonin stimulates aromatase expression and estradiol production in human granulosa-lutein cells: relevance for high serum estradiol levels in patients with ovarian hyperstimulation syndrome.
Animals
Aromatase
/ metabolism
Cyclic AMP Response Element-Binding Protein
/ metabolism
Cyclic AMP-Dependent Protein Kinases
/ metabolism
Estradiol
/ biosynthesis
Female
Follicular Fluid
/ metabolism
Granulosa Cells
/ drug effects
Humans
Luteal Cells
/ drug effects
Melatonin
/ pharmacology
Mice, Inbred ICR
Ovarian Hyperstimulation Syndrome
/ blood
Receptors, Melatonin
/ metabolism
Signal Transduction
/ drug effects
Journal
Experimental & molecular medicine
ISSN: 2092-6413
Titre abrégé: Exp Mol Med
Pays: United States
ID NLM: 9607880
Informations de publication
Date de publication:
08 2020
08 2020
Historique:
received:
26
03
2020
accepted:
06
07
2020
revised:
21
06
2020
pubmed:
29
8
2020
medline:
11
8
2021
entrez:
29
8
2020
Statut:
ppublish
Résumé
Ovarian hyperstimulation syndrome (OHSS) is one of the most life-threatening and potentially fatal complications associated with controlled ovarian hyperstimulation (COH) during in vitro fertilization (IVF) treatment. Although the pathogenesis of OHSS remains unclear, elevated serum estradiol (E2) levels before human chorionic gonadotropin (hCG) administration are associated with the risk of OHSS. The pineal hormone melatonin and its receptors are expressed in human granulosa cells and have been shown to stimulate E2 production. However, the effect of melatonin on the expression of aromatase, an enzyme responsible for a key step in the biosynthesis of E2, in human granulosa cells remains to be determined. Here, we demonstrate that melatonin upregulates aromatase expression in primary cultured human granulosa-lutein (hGL) cells through the melatonin receptor-mediated PKA-CREB pathway. Using a mouse model of OHSS, we demonstrate that administration of the melatonin receptor inhibitor luzindole inhibits the development of OHSS. In addition, the expression of ovarian aromatase and serum E2 levels are upregulated in OHSS mice compared to control mice, but this upregulation is attenuated by inhibition of the function of melatonin. Moreover, clinical results reveal that aromatase expression levels are upregulated in hGL cells from OHSS patients. Melatonin and E2 levels in the follicular fluid are significantly higher in OHSS patients than in non-OHSS patients. Furthermore, melatonin levels are positively correlated with E2 levels in follicular fluid. This study helps to elucidate the mechanisms mediating the expression of aromatase in hGL cells and provides a potential mechanism explaining the high E2 levels in patients with OHSS.
Identifiants
pubmed: 32855437
doi: 10.1038/s12276-020-00491-w
pii: 10.1038/s12276-020-00491-w
pmc: PMC8080626
doi:
Substances chimiques
Cyclic AMP Response Element-Binding Protein
0
Receptors, Melatonin
0
Estradiol
4TI98Z838E
Aromatase
EC 1.14.14.1
Cyclic AMP-Dependent Protein Kinases
EC 2.7.11.11
Melatonin
JL5DK93RCL
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1341-1350Subventions
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 81601253
Pays : International
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 81820108016
Pays : International
Références
Simpson, E. R. Models of aromatase insufficiency. Semin. Reprod. Med. 22, 25–30 (2004).
pubmed: 15083378
Doody, K. J., Lorence, M. C., Mason, J. I. & Simpson, E. R. Expression of messenger ribonucleic acid species encoding steroidogenic enzymes in human follicles and corpora lutea throughout the menstrual cycle. J. Clin. Endocrinol. Metab. 70, 1041–1045 (1990).
pubmed: 2180973
Stocco, C. Aromatase expression in the ovary: hormonal and molecular regulation. Steroids 73, 473–487 (2008).
pubmed: 18321551
pmcid: 2365984
Delvigne, A. & Rozenberg, S. Epidemiology and prevention of ovarian hyperstimulation syndrome (OHSS): a review. Hum. Reprod. Update 8, 559–577 (2002).
pubmed: 12498425
Kumar, P., Sait, S. F., Sharma, A. & Kumar, M. Ovarian hyperstimulation syndrome. J. Hum. Reprod. Sci. 4, 70–75 (2011).
pubmed: 22065820
pmcid: 3205536
Practice Committee of the American Society for Reproductive Medicine. Electronic address, A.a.o. & Practice Committee of the American Society for Reproductive, M. Prevention and treatment of moderate and severe ovarian hyperstimulation syndrome: a guideline. Fertil. Steril. 106, 1634–1647 (2016).
Lee, T. H. et al. Serum anti-Mullerian hormone and estradiol levels as predictors of ovarian hyperstimulation syndrome in assisted reproduction technology cycles. Hum. Reprod. 23, 160–167 (2008).
pubmed: 18000172
Hendriks, D. J. et al. Use of stimulated serum estradiol measurements for the prediction of hyperresponse to ovarian stimulation in in vitro fertilization (IVF). J. Assist. Reprod. Genet. 21, 65–72 (2004).
pubmed: 15202733
pmcid: 3455404
Cavallo, A. Melatonin and human puberty: current perspectives. J. Pineal Res. 15, 115–121 (1993).
pubmed: 8106956
Cagnacci, A. Melatonin in relation to physiology in adult humans. J. Pineal Res. 21, 200–213 (1996).
pubmed: 8989718
Acuna-Castroviejo, D. et al. Extrapineal melatonin: sources, regulation, and potential functions. Cell. Mol. life Sci. 71, 2997–3025 (2014).
pubmed: 24554058
Kvetnoy, I. M. Extrapineal melatonin: location and role within diffuse neuroendocrine system. Histochem. J. 31, 1–12 (1999).
pubmed: 10405817
Itoh, M. T., Ishizuka, B., Kuribayashi, Y., Amemiya, A. & Sumi, Y. Melatonin, its precursors, and synthesizing enzyme activities in the human ovary. Mol. Hum. Reprod. 5, 402–408 (1999).
pubmed: 10338362
Brzezinski, A., Seibel, M. M., Lynch, H. J., Deng, M. H. & Wurtman, R. J. Melatonin in human preovulatory follicular fluid. J. Clin. Endocrinol. Metab. 64, 865–867 (1987).
pubmed: 3818907
Li, Y. et al. Higher melatonin in the follicle fluid and MT2 expression in the granulosa cells contribute to the OHSS occurrence. Reprod. Biol. Endocrinol. 17, 37 (2019).
pubmed: 30979376
pmcid: 6461819
Dubocovich, M. L. & Markowska, M. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine 27, 101–110 (2005).
pubmed: 16217123
Woo, M. M. et al. Direct action of melatonin in human granulosa-luteal cells. J. Clin. Endocrinol. Metab. 86, 4789–4797 (2001).
pubmed: 11600542
Bodis, J., Koppan, M., Kornya, L., Tinneberg, H. R. & Torok, A. Influence of melatonin on basal and gonadotropin-stimulated progesterone and estradiol secretion of cultured human granulosa cells and in the superfused granulosa cell system. Gynecol. Obstet. Invest. 52, 198–202 (2001).
pubmed: 11598364
Yie, S. M. et al. Melatonin and steroids in human pre-ovulatory follicular fluid: seasonal variations and granulosa cell steroid production. Hum. Reprod. 10, 50–55 (1995).
pubmed: 7745070
Sirotkin, A. V. Direct influence of melatonin on steroid, nonapeptide hormones, and cyclic nucleotide secretion by granulosa cells isolated from porcine ovaries. J. Pineal Res. 17, 112–117 (1994).
pubmed: 7897582
Fang, L. et al. Human chorionic gonadotropin-induced amphiregulin stimulates aromatase expression in human granulosa-lutein cells: a mechanism for estradiol production in the luteal phase. Hum. Reprod. 34, 2018–2026 (2019).
pubmed: 31553790
Fang, L. et al. TGF-beta1 induces VEGF expression in human granulosa-lutein cells: a potential mechanism for the pathogenesis of ovarian hyperstimulation syndrome. Exp. Mol. Med. 52, 450–460 (2020).
pubmed: 32152452
pmcid: 7156760
Fang, L. et al. Melatonin induces progesterone production in human granulosa-lutein cells through upregulation of StAR expression. Aging 11, 9013–9024 (2019).
pubmed: 31619582
pmcid: 6834401
Jockers, R., Maurice, P., Boutin, J. A. & Delagrange, P. Melatonin receptors, heterodimerization, signal transduction and binding sites: what’s new? Br. J. Pharmacol. 154, 1182–1195 (2008).
pubmed: 18493248
pmcid: 2483381
Michael, M. D., Michael, L. F. & Simpson, E. R. A CRE-like sequence that binds CREB and contributes to cAMP-dependent regulation of the proximal promoter of the human aromatase P450 (CYP19) gene. Mol. Cell. Endocrinol. 134, 147–156 (1997).
pubmed: 9426158
Fainaru, O., Hornstein, M. D. & Folkman, J. Doxycycline inhibits vascular leakage and prevents ovarian hyperstimulation syndrome in a murine model. Fertil. Steril. 92, 1701–1705 (2009).
pubmed: 18937946
Chuderland, D. et al. The role of pigment epithelium-derived factor in the pathophysiology and treatment of ovarian hyperstimulation syndrome in mice. J. Clin. Endocrinol. Metab. 98, E258–E266 (2013).
pubmed: 23295464
Proietti, S., Cucina, A., Reiter, R. J. & Bizzarri, M. Molecular mechanisms of melatonin’s inhibitory actions on breast cancers. Cell. Mol. life Sci. 70, 2139–2157 (2013).
pubmed: 23007844
Zhao, H., Zhou, L., Shangguan, A. J. & Bulun, S. E. Aromatase expression and regulation in breast and endometrial cancer. J. Mol. Endocrinol. 57, R19–R33 (2016).
pubmed: 27067638
pmcid: 5519084
Simpson, E. R. et al. Estrogen-the good, the bad, and the unexpected. Endocr. Rev. 26, 322–330 (2005).
pubmed: 15817672
Chen, D. et al. Regulation of breast cancer-associated aromatase promoters. Cancer Lett. 273, 15–27 (2009).
pubmed: 18614276
Carlone, D. L. & Richards, J. S. Functional interactions, phosphorylation, and levels of 3’,5’-cyclic adenosine monophosphate-regulatory element binding protein and steroidogenic factor-1 mediate hormone-regulated and constitutive expression of aromatase in gonadal cells. Mol. Endocrinol. 11, 292–304 (1997).
pubmed: 9058376
Mukherjee, A., Park-Sarge, O. K. & Mayo, K. E. Gonadotropins induce rapid phosphorylation of the 3’,5’-cyclic adenosine monophosphate response element binding protein in ovarian granulosa cells. Endocrinology 137, 3234–3245 (1996).
pubmed: 8754745
Somers, J. P., DeLoia, J. A. & Zeleznik, A. J. Adenovirus-directed expression of a nonphosphorylatable mutant of CREB (cAMP response element-binding protein) adversely affects the survival, but not the differentiation, of rat granulosa cells. Mol. Endocrinol. 13, 1364–1372 (1999).
pubmed: 10446909
Sung, J. Y., Bae, J. H., Lee, J. H., Kim, Y. N. & Kim, D. K. The melatonin signaling pathway in a long-term memory in vitro study. Molecules 23, 737 (2018).
pmcid: 6017053
Costes, S., Boss, M., Thomas, A. P. & Matveyenko, A. V. Activation of melatonin signaling promotes beta-cell survival and function. Mol. Endocrinol. 29, 682–692 (2015).
pubmed: 25695910
pmcid: 4415205
Sofi, M., Young, M. J., Papamakarios, T., Simpson, E. R. & Clyne, C. D. Role of CRE-binding protein (CREB) in aromatase expression in breast adipose. Breast Cancer Res. Treat. 79, 399–407 (2003).
pubmed: 12846424
Huang, C. C. et al. Hyperactive CREB signaling pathway involved in the pathogenesis of polycystic ovarian syndrome revealed by patient-specific induced pluripotent stem cell modeling. Fertil. Steril. 112, 594–607 e512 (2019).
pubmed: 31277818
Sher, G., Zouves, C., Feinman, M. & Maassarani, G. ‘Prolonged coasting’: an effective method for preventing severe ovarian hyperstimulation syndrome in patients undergoing in-vitro fertilization. Hum. Reprod. 10, 3107–3109 (1995).
pubmed: 8822423
McClure, N. et al. Vascular endothelial growth factor as capillary permeability agent in ovarian hyperstimulation syndrome. Lancet 344, 235–236 (1994).
pubmed: 7913160
Ajonuma, L. C. et al. Estrogen-induced abnormally high cystic fibrosis transmembrane conductance regulator expression results in ovarian hyperstimulation syndrome. Mol. Endocrinol. 19, 3038–3044 (2005).
pubmed: 16051669
Saint-Criq, V. & Gray, M. A. Role of CFTR in epithelial physiology. Cell. Mol. life Sci. 74, 93–115 (2017).
pubmed: 27714410
Elchalal, U. & Schenker, J. G. The pathophysiology of ovarian hyperstimulation syndrome-views and ideas. Hum. Reprod. 12, 1129–1137 (1997).
pubmed: 9221989
Chen, H. et al. Impaired CFTR-dependent amplification of FSH-stimulated estrogen production in cystic fibrosis and PCOS. J. Clin. Endocrinol. Metab. 97, 923–932 (2012).
pubmed: 22170719
Carocci, A., Catalano, A. & Sinicropi, M. S. Melatonergic drugs in development. Clin. Pharmacol. 6, 127–137 (2014).
pubmed: 25258560
pmcid: 4172069
Li, Y. et al. Melatonin for the prevention and treatment of cancer. Oncotarget 8, 39896–39921 (2017).
pubmed: 28415828
pmcid: 5503661
Li, X. M., Beau, J., Delagrange, P., Mocaer, E. & Levi, F. Circadian rhythm entrainment with melatonin, melatonin receptor antagonist S22153 or their combination in mice exposed to constant light. J. Pineal Res. 37, 176–184 (2004).
pubmed: 15357662
Sumaya, I. C., Masana, M. I. & Dubocovich, M. L. The antidepressant-like effect of the melatonin receptor ligand luzindole in mice during forced swimming requires expression of MT2 but not MT1 melatonin receptors. J. Pineal Res. 39, 170–177 (2005).
pubmed: 16098095