The Value of Voltage Histogram Analysis Derived Right Atrial Scar Burden in the Prediction of Left Atrial Scar Burden.
Journal
Cardiology research and practice
ISSN: 2090-8016
Titre abrégé: Cardiol Res Pract
Pays: United States
ID NLM: 101516542
Informations de publication
Date de publication:
2020
2020
Historique:
received:
04
05
2020
revised:
03
07
2020
accepted:
21
07
2020
entrez:
29
8
2020
pubmed:
29
8
2020
medline:
29
8
2020
Statut:
epublish
Résumé
Growing evidence suggests that fibrotic changes can be observed in atrial fibrillation (AF) in both atria. Quantification of the scar burden during electroanatomical mapping might have important therapeutic and prognostic consequences. However, as the current invasive treatment of AF is focused on the left atrium (LA), the role of the right atrium (RA) is less well understood. We aimed to characterize the clinical determinates of the RA low-voltage burden and its relation to the LA scaring. We have included 36 patients who underwent catheter ablation for AF in a prospective observational study. In addition to LA mapping and ablation, high-density RA bipolar voltage maps (HD-EAM) were also reconstructed. The extent of the diseased RA tissue (≤0.5 mV) was quantified using the voltage histogram analysis tool (CARTO The percentage of RA diseased tissue burden was significantly higher in patients with a CHA Determining the extent of the right atrial low-voltage burden might give useful clinical information. According to our results, the diseased tissue burden correlates well between the two atria: the right atrium mirrors the left atrium.
Identifiants
pubmed: 32855820
doi: 10.1155/2020/3981684
pmc: PMC7442993
doi:
Types de publication
Journal Article
Langues
eng
Pagination
3981684Informations de copyright
Copyright © 2020 Szilvia Herczeg et al.
Déclaration de conflit d'intérêts
GS receives personal fees from Johnson and Johnson Medical and Abbott; other authors have no conflicts of interest to declare.
Références
J Am Coll Cardiol. 2017 Aug 8;70(6):756-765
pubmed: 28774383
Heart Rhythm. 2017 Jan;14(1):e3-e40
pubmed: 27320515
Heart Rhythm. 2015 Nov;12(11):2207-12
pubmed: 26144350
Europace. 2017 Feb 1;19(2):180-189
pubmed: 28172967
J Am Soc Echocardiogr. 2005 Dec;18(12):1440-63
pubmed: 16376782
Cardiol Res Pract. 2019 Feb 4;2019:8271871
pubmed: 30863630
J Am Coll Cardiol. 2015 Aug 25;66(8):943-59
pubmed: 26293766
J Atr Fibrillation. 2012 Aug 20;5(2):509
pubmed: 28496757
AJR Am J Roentgenol. 2010 May;194(5):W375-81
pubmed: 20410381
J Am Coll Cardiol. 2013 Aug 27;62(9):802-12
pubmed: 23727084
J Interv Card Electrophysiol. 2019 Jun 5;:
pubmed: 31165967
Circ Arrhythm Electrophysiol. 2012 Aug 1;5(4):632-9
pubmed: 22787011
Prog Cardiovasc Dis. 2015 Sep-Oct;58(2):136-51
pubmed: 26241303
J Cardiovasc Electrophysiol. 2011 Feb;22(2):223-35
pubmed: 20812935
JACC Clin Electrophysiol. 2018 Jan;4(1):87-96
pubmed: 29600790
Circ Cardiovasc Imaging. 2016 Oct;9(10):
pubmed: 27729358
J Cardiovasc Electrophysiol. 2015 May;26(5):484-92
pubmed: 25727248
Eur Heart J Cardiovasc Imaging. 2016 Apr;17(4):355-83
pubmed: 26864186
Eur Heart J. 2016 Oct 7;37(38):2893-2962
pubmed: 27567408
J Atr Fibrillation. 2018 Jun 30;11(1):1773
pubmed: 30455829
Circulation. 1997 Aug 19;96(4):1180-4
pubmed: 9286947
Eur Heart J. 2008 Sep;29(18):2234-43
pubmed: 18621772
J Cardiovasc Electrophysiol. 2017 Oct;28(10):1109-1116
pubmed: 28730651
World J Cardiol. 2016 Mar 26;8(3):267-76
pubmed: 27022458
Int J Cardiol. 2016 Oct 1;220:155-61
pubmed: 27389440
Am J Cardiol. 2019 Apr 1;123(7):1180-1184
pubmed: 30660353
Sheng Li Xue Bao. 2009 Jun 25;61(3):211-6
pubmed: 19536432
J Cardiovasc Electrophysiol. 2012 Jul;23(7):797-9
pubmed: 22554187
Circ Cardiovasc Imaging. 2011 Sep;4(5):524-31
pubmed: 21778328