Model-based clustering of time-evolving networks through temporal exponential-family random graph models.

Minorization-maximization Model selection Model-based clustering Temporal ERGM Time-evolving network Variational EM algorithm

Journal

Journal of multivariate analysis
ISSN: 0047-259X
Titre abrégé: J Multivar Anal
Pays: United States
ID NLM: 9890139

Informations de publication

Date de publication:
Jan 2020
Historique:
entrez: 1 9 2020
pubmed: 31 8 2020
medline: 31 8 2020
Statut: ppublish

Résumé

Dynamic networks are a general language for describing time-evolving complex systems, and discrete time network models provide an emerging statistical technique for various applications. It is a fundamental research question to detect a set of nodes sharing similar connectivity patterns in time-evolving networks. Our work is primarily motivated by detecting groups based on interesting features of the time-evolving networks (e.g., stability). In this work, we propose a model-based clustering framework for time-evolving networks based on discrete time exponential-family random graph models, which simultaneously allows both modeling and detecting group structure. To choose the number of groups, we use the conditional likelihood to construct an effective model selection criterion. Furthermore, we propose an efficient variational expectation-maximization (EM) algorithm to find approximate maximum likelihood estimates of network parameters and mixing proportions. The power of our method is demonstrated in simulation studies and empirical applications to international trade networks and the collaboration networks of a large research university.

Identifiants

pubmed: 32863458
doi: 10.1016/j.jmva.2019.104540
pmc: PMC7448400
mid: NIHMS1539162
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : NIDA NIH HHS
ID : P50 DA039838
Pays : United States

Références

Ann Appl Stat. 2013 Dec 10;7(2):1010-1039
pubmed: 26605002
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 2):026113
pubmed: 14995526
J Mach Learn Res. 2008 Sep;9:1981-2014
pubmed: 21701698
Stat Methodol. 2011 Jul;8(4):319-339
pubmed: 21691424
Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21068-73
pubmed: 19934050
Nature. 2004 Jul 1;430(6995):88-93
pubmed: 15190252
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jan;83(1 Pt 2):016107
pubmed: 21405744
Technometrics. 2020;62(2):161-172
pubmed: 33716325
Biometrika. 2012 Jun;99(2):273-284
pubmed: 23843660
Proc Natl Acad Sci U S A. 2004 Apr 6;101 Suppl 1:5200-5
pubmed: 14745042
Stat Surv. 2018;12:105-135
pubmed: 31428219
Science. 2006 Jan 6;311(5757):88-90
pubmed: 16400149
Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):7821-6
pubmed: 12060727
Nat Biotechnol. 2009 Feb;27(2):199-204
pubmed: 19182785
J R Stat Soc Series B Stat Methodol. 2014 Jan 1;76(1):29-46
pubmed: 24443639

Auteurs

Kevin H Lee (KH)

Department of Statistics, Western Michigan University, Kalamazoo, MI 49008, USA.

Lingzhou Xue (L)

Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA.

David R Hunter (DR)

Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA.

Classifications MeSH