Palmatine attenuates LPS-induced inflammatory response in mouse mammary epithelial cells through inhibiting ERK1/2, P38 and Akt/NF-кB signalling pathways.
Akt/NF-кB
ERK1/2
P38
inflammatory response
palmatine
Journal
Journal of animal physiology and animal nutrition
ISSN: 1439-0396
Titre abrégé: J Anim Physiol Anim Nutr (Berl)
Pays: Germany
ID NLM: 101126979
Informations de publication
Date de publication:
Jan 2021
Jan 2021
Historique:
received:
08
04
2020
revised:
23
06
2020
accepted:
22
07
2020
pubmed:
1
9
2020
medline:
16
10
2021
entrez:
1
9
2020
Statut:
ppublish
Résumé
Palmatine has a wide range of pharmacological effects and anti-inflammatory function. However, the effect of palmatine on LPS-induced inflammatory response of mammary epithelial cells has not been reported. In this research, we studied the anti-inflammatory mechanism of palmatine in EpH4-Ev (mouse mammary epithelial cells). EpH4-Ev cells were pre-treated with palmatine and then incubated with LPS. Cells were collected for examining production of pro-inflammatory mediators by qRT-PCR, and the related inflammatory signalling pathway was detected through immunofluorescence and Western blot. The results found that palmatine could significantly reduce the expression of IL-6, TNF-α, IL-1β and COX-2 in EpH4-Ev cells. Research on mechanisms found that palmatine could significantly inhibit the protein levels of p-Akt, p-P65, p-ERK1/2 and p-P38 in EpH4-Ev cells. In conclusion, these data suggested that palmatine inhibits inflammatory response in LPS-induced EpH4-Ev cells via down-regulating Akt/ NF-кB, ERK1/2 and P38 signalling pathways.
Substances chimiques
Berberine Alkaloids
0
Lipopolysaccharides
0
NF-kappa B
0
Proto-Oncogene Proteins c-akt
EC 2.7.11.1
palmatine
G50C034217
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
183-190Subventions
Organisme : National Natural Science Foundation of China
ID : 31672509
Organisme : National Natural Science Foundation of China
ID : 31873004
Informations de copyright
© 2020 Wiley-VCH GmbH.
Références
Abdulkhaleq, L. A., Assi, M. A., Abdullah, R., Zamri-Saad, M., Taufiq-Yap, Y. H., & Hezmee, M. N. M. (2018). The crucial roles of inflammatory mediators in inflammation: A review. Veterinary World, 11(5), 627-635. https://doi.org/10.14202/vetworld.2018.627-635
Bailly, S., Mahe, Y., Ferrua, B., Fay, M., Tursz, T., Wakasugi, H., & Gougerot-Pocidalo, M. A. (1990). Quinolone-induced differential modification of IL-1 alpha and IL-1 beta production by LPS-stimulated human monocytes. Cellular Immunology, 128(1), 277-288. https://doi.org/10.1016/0008-8749(90)90025-m
Brazaitis, M., Eimantas, N., Daniuseviciute, L., Mickeviciene, D., Steponaviciute, R., & Skurvydas, A. (2014). Two strategies for response to 14 degrees C cold-water immersion: Is there a difference in the response of motor, cognitive, immune and stress markers? PLoS One, 9(9), e109020. https://doi.org/10.1371/journal.pone.0109020
Chen, Q., Duan, X., Fan, H., Xu, M., Tang, Q., Zhang, L., … Nan, Z. (2017). Oxymatrine protects against DSS-induced colitis via inhibiting the PI3K/AKT signaling pathway. International Immunopharmacology, 53, 149-157. https://doi.org/10.1016/j.intimp.2017.10.025
Cheng, L., Ren, Y., Lin, D., Peng, S., Zhong, B. O., & Ma, Z. (2017). The anti-inflammatory properties of citrus wilsonii tanaka extract in LPS-induced RAW 264.7 and primary mouse bone marrow-derived dendritic cells. Molecules, 22(7), 1213. https://doi.org/10.3390/molecules22071213
Child, Health and Development (2000). Mastitis: Causes and management.
Creasy, R. K., Resnik, R., & Iams, J. D. (1994). Maternal-fetal medicine: Principles and practice.
Devereux, W. P. (1970). Acute puerperal mastitis. Evaluation of Its Management, 108(1), 78. https://doi.org/10.1016/0002-9378(70)90208-5
Frangogiannis, N. G.,C Wayne, S., & Entman, M. L.(2002). The inflammatory response in myocardial infarction. Cardiovascular Research, 53(1), 31-47. https://doi.org/10.1016/S0008-6363(01)00434-5
Fritsche, K. L. (2015). The science of fatty acids and inflammation. Advances in Nutrition, 6(3), 293S-301S. https://doi.org/10.3945/an.114.006940
Ghosh, S., & Dass, J. F. P. J. G. (2016). Study of pathway cross-talk interactions with NF-κB leading to its activation via ubiquitination or phosphorylation: A brief review. Gene, 584(1), 97-109.
Gong, Q., Li, Y., Ma, H., Guo, W., Kan, X., Xu, D., … Fu, S. (2018). Peiminine protects against lipopolysaccharide-induced mastitis by inhibiting the AKT/NF-kappaB, ERK1/2 and p38 signaling pathways. International Journal of Molecular Sciences, 19(9), 2637-2637. https://doi.org/10.3390/ijms19092637
Guo, W., Liu, B., Yin, Y., Kan, X., Gong, Q., Li, Y., … Liu, J. (2019). Licochalcone A protects the blood-milk barrier integrity and relieves the inflammatory response in LPS-induced mastitis. Frontiers in Immunology, 10, 287. https://doi.org/10.3389/fimmu.2019.00287
Harikrishnan, H., Jantan, I., Haque, M. A., & Kumolosasi, E. (2018). Anti-inflammatory effects of hypophyllanthin and niranthin through downregulation of NF-kappaB/MAPKs/PI3K-Akt signaling pathways. Inflammation, 41(3), 984-995. https://doi.org/10.1007/s10753-018-0752-4
He, X., Liu, W., Shi, M., Yang, Z., Zhang, X., & Gong, P. (2017). Docosahexaenoic acid attenuates LPS-stimulated inflammatory response by regulating the PPARγ/NF-κB pathways in primary bovine mammary epithelial cells. Research in Veterinary Science, 112, 7-12. https://doi.org/10.1016/j.rvsc.2016.12.011
Isbister, C. (1952). Acute mastitis: A study of 28 cases. Medical Journal of Australia, 2(23), 801. https://doi.org/10.5694/j.1326-5377.1952.tb94809.x
John, G. C., Nduati, R. W., Mbori-Ngacha, D. A., Richardson, B. A., Panteleeff, D., Mwatha, A., … Kreiss, J. K. (2001). Correlates of mother-to-child human immunodeficiency virus type 1 (HIV-1) transmission: Association with maternal plasma HIV-1 RNA load, genital HIV-1 DNA shedding, and breast infections. Journal of Infectious Diseases, 183(2), 206-212. https://doi.org/10.1086/317918
Kim, D.-C., Quang, T., Oh, H., & Kim, Y.-C. (2018). Correction: Dong-Cheol Kim. et al Steppogenin Isolated from Cudrania tricuspidata Shows Antineuroinflammatory Effects via NF-κB and MAPK Pathways in LPS-Stimulated BV2 and Primary Rat Microglial Cells. Molecules 2017, 22, 2130. Molecules, 23(6), 1244. https://doi.org/10.3390/molecules23061244
Lawrence, R. A. (1980). Breastfeeding: A guide for the medical profession, Vol. 31 (pp. 205-206). New Jersey, NJ: wiley.
Li, Y., Xia, J., Jiang, N., Xian, Y., Zhang, X. J. B. (2017). Corin protects H2O2-induced apoptosis through PI3K/AKT and NF-κB pathway in cardiomyocytes. Biomedicine & Pharmacotherapy, 97, 594-599.
Long, J., Song, J., Zhong, L. I., Liao, Y., Liu, L., & Li, X. (2019). Palmatine: A review of its pharmacology, toxicity and pharmacokinetics. Biochimie, 162, 176-184.
Lopes, P. C. (2016). LPS and neuroinflammation: A matter of timing. Inflammopharmacology, 24(5), 291-293. https://doi.org/10.1007/s10787-016-0283-2
Lumin, Y. U., Shang, F., Chen, X., Ni, J., Li, Y. U., Zhang, M., … Xue, T. (2018). The anti-biofilm effect of silver-nanoparticle-decorated quercetin nanoparticles on a multi-drug resistant Escherichia coli strain isolated from a dairy cow with mastitis. PeerJ. 6, e5711.
Matheson, I., Aursnes, I., Horgen, M., Aabø, Ø., & Melby, K. (1988).Bacteriological findings and clinical symptoms. Acta Obstetricia et Gynecologica Scandinavica, 67(8), 723-726. https://doi.org/10.3109/00016349809004296
Medzhitov, R. J. N. (2008). Origin and physiological roles of inflammation. Nature, 454(7203), 428-435.
Ogle, K. S., Davis, S. (1988). Mastitis in lactating women. The Journal of Family Practice, 26(2), 139-144.
Qi, T., Li, H., & Li, S. (2017). Indirubin improves antioxidant and anti-inflammatory functions in lipopolysaccharide-challenged mice. Oncotarget, 8(22), 36658-36663. https://doi.org/10.18632/oncotarget.17560
Ramudo, L., Manso, M. A., Vicente, S., & Dios, I. D. (2005). Pro- and anti-inflammatory response of acinar cells during acute pancreatitis. Effect of N-acetyl cysteine. Cytokine, 32(3-4), 125-131.
Rosa, S. I. G., Riossantos, F., & Balogun, S. O. (2016). Vitexin reduces neutrophil migration to inflammatory focus by down-regulating pro-inflammatory mediators via inhibition of P38, ERK1/2 and JNK pathway. Phytomedicine, 23(1), 9-17. https://doi.org/10.1016/j.phymed.2015.11.003
Schönbach, C. (2013). Pro-inflammatory mediators. New York, NY: Springer.
Somensi, N., Rabelo, T. K., Guimaraes, A. G., Quintans-Junior, L. J., de Souza Araujo, A. A., Moreira, J. C. F., & Gelain, D. P. (2019). Carvacrol suppresses LPS-induced pro-inflammatory activation in RAW 264.7 macrophages through ERK1/2 and NF-kB pathway. International Immunopharmacology, 75, 105743. https://doi.org/10.1016/j.intimp.2019.105743
Tang, F., Wang, Y., Hemmings, B. A., Rüegg, C., Xue, G. (2000). PKB/Akt-dependent regulation of inflammation in cancer. S1044579X17301177.
Torres-Ramos, M. A., Cuevas, E., Tobon-Velasco, J. C. J. C., & Targets, N. D. D. (2014). Receptor for AGEs (RAGE) as mediator of NF-kB pathway activation in neuroinflammation and oxidative stress. CNS & Neurological Disorders Drug Targets, 13(9), 1615-1626.
Wang, H., Huang, W., Liang, M., Shi, Y., Zhang, C., Li, Q., … Shen, Z. (2018). (+)-JQ1 attenuated LPS-induced microglial inflammation via MAPK/NFkappaB signaling. Cell & Bioscience, 8, 60. https://doi.org/10.1186/s13578-018-0258-7
Wang, L., Li, X., & Wang, Y. (2018). GSK3beta inhibition attenuates LPS-induced IL-6 expression in porcine adipocytes. Scientific Reports, 8(1), 15967. https://doi.org/10.1038/s41598-018-34186-0
Wang, W., Weng, J., Lei, Y. U., Huang, Q., Jiang, Y., & Guo, X. (2018). Role of TLR4-p38 MAPK-Hsp27 signal pathway in LPS-induced pulmonary epithelial hyperpermeability. BMC Pulmonary Medicine, 18(1), 178.
Xue, T., Yu, L., Shang, F., Li, W., Zhang, M., Ni, J., & Chen, X. (2016). Short communication: The role of autoinducer 2 (AI-2) on antibiotic resistance regulation in an Escherichia coli strain isolated from a dairy cow with mastitis. Journal of Dairy Science, 99(6):4693-4698.
Yan, B., Wang, D., Dong, S., Cheng, Z., Na, L., Sang, M., … Yan, Z. (2017). Palmatine inhibits TRIF-dependent NF-κB pathway against inflammation induced by LPS in goat endometrial epithelial cells. International Immunopharmacology, 45, 194-200. https://doi.org/10.1016/j.intimp.2017.02.004
Yang, C., Liu, P., Wang, S., Zhao, G., Zhang, T., Guo, S., … Deng, G. (2018). Shikonin exerts anti-inflammatory effects in LPS-induced mastitis by inhibiting NF-kappaB signaling pathway. Biochemical and Biophysical Research Communications, 505(1), 1-6. https://doi.org/10.1016/j.bbrc.2018.08.198
Zha, L., Chen, J., Sun, S., Mao, L., Chu, X., Deng, H., … Cao, W. (2014). Soyasaponins can blunt inflammation by inhibiting the reactive oxygen species-mediated activation of PI3K/Akt/NF-kB pathway. PLoS One, 9(9), e107655. https://doi.org/10.1371/journal.pone.0107655