Palmatine attenuates LPS-induced inflammatory response in mouse mammary epithelial cells through inhibiting ERK1/2, P38 and Akt/NF-кB signalling pathways.


Journal

Journal of animal physiology and animal nutrition
ISSN: 1439-0396
Titre abrégé: J Anim Physiol Anim Nutr (Berl)
Pays: Germany
ID NLM: 101126979

Informations de publication

Date de publication:
Jan 2021
Historique:
received: 08 04 2020
revised: 23 06 2020
accepted: 22 07 2020
pubmed: 1 9 2020
medline: 16 10 2021
entrez: 1 9 2020
Statut: ppublish

Résumé

Palmatine has a wide range of pharmacological effects and anti-inflammatory function. However, the effect of palmatine on LPS-induced inflammatory response of mammary epithelial cells has not been reported. In this research, we studied the anti-inflammatory mechanism of palmatine in EpH4-Ev (mouse mammary epithelial cells). EpH4-Ev cells were pre-treated with palmatine and then incubated with LPS. Cells were collected for examining production of pro-inflammatory mediators by qRT-PCR, and the related inflammatory signalling pathway was detected through immunofluorescence and Western blot. The results found that palmatine could significantly reduce the expression of IL-6, TNF-α, IL-1β and COX-2 in EpH4-Ev cells. Research on mechanisms found that palmatine could significantly inhibit the protein levels of p-Akt, p-P65, p-ERK1/2 and p-P38 in EpH4-Ev cells. In conclusion, these data suggested that palmatine inhibits inflammatory response in LPS-induced EpH4-Ev cells via down-regulating Akt/ NF-кB, ERK1/2 and P38 signalling pathways.

Identifiants

pubmed: 32865324
doi: 10.1111/jpn.13440
doi:

Substances chimiques

Berberine Alkaloids 0
Lipopolysaccharides 0
NF-kappa B 0
Proto-Oncogene Proteins c-akt EC 2.7.11.1
palmatine G50C034217

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

183-190

Subventions

Organisme : National Natural Science Foundation of China
ID : 31672509
Organisme : National Natural Science Foundation of China
ID : 31873004

Informations de copyright

© 2020 Wiley-VCH GmbH.

Références

Abdulkhaleq, L. A., Assi, M. A., Abdullah, R., Zamri-Saad, M., Taufiq-Yap, Y. H., & Hezmee, M. N. M. (2018). The crucial roles of inflammatory mediators in inflammation: A review. Veterinary World, 11(5), 627-635. https://doi.org/10.14202/vetworld.2018.627-635
Bailly, S., Mahe, Y., Ferrua, B., Fay, M., Tursz, T., Wakasugi, H., & Gougerot-Pocidalo, M. A. (1990). Quinolone-induced differential modification of IL-1 alpha and IL-1 beta production by LPS-stimulated human monocytes. Cellular Immunology, 128(1), 277-288. https://doi.org/10.1016/0008-8749(90)90025-m
Brazaitis, M., Eimantas, N., Daniuseviciute, L., Mickeviciene, D., Steponaviciute, R., & Skurvydas, A. (2014). Two strategies for response to 14 degrees C cold-water immersion: Is there a difference in the response of motor, cognitive, immune and stress markers? PLoS One, 9(9), e109020. https://doi.org/10.1371/journal.pone.0109020
Chen, Q., Duan, X., Fan, H., Xu, M., Tang, Q., Zhang, L., … Nan, Z. (2017). Oxymatrine protects against DSS-induced colitis via inhibiting the PI3K/AKT signaling pathway. International Immunopharmacology, 53, 149-157. https://doi.org/10.1016/j.intimp.2017.10.025
Cheng, L., Ren, Y., Lin, D., Peng, S., Zhong, B. O., & Ma, Z. (2017). The anti-inflammatory properties of citrus wilsonii tanaka extract in LPS-induced RAW 264.7 and primary mouse bone marrow-derived dendritic cells. Molecules, 22(7), 1213. https://doi.org/10.3390/molecules22071213
Child, Health and Development (2000). Mastitis: Causes and management.
Creasy, R. K., Resnik, R., & Iams, J. D. (1994). Maternal-fetal medicine: Principles and practice.
Devereux, W. P. (1970). Acute puerperal mastitis. Evaluation of Its Management, 108(1), 78. https://doi.org/10.1016/0002-9378(70)90208-5
Frangogiannis, N. G.,C Wayne, S., & Entman, M. L.(2002). The inflammatory response in myocardial infarction. Cardiovascular Research, 53(1), 31-47. https://doi.org/10.1016/S0008-6363(01)00434-5
Fritsche, K. L. (2015). The science of fatty acids and inflammation. Advances in Nutrition, 6(3), 293S-301S. https://doi.org/10.3945/an.114.006940
Ghosh, S., & Dass, J. F. P. J. G. (2016). Study of pathway cross-talk interactions with NF-κB leading to its activation via ubiquitination or phosphorylation: A brief review. Gene, 584(1), 97-109.
Gong, Q., Li, Y., Ma, H., Guo, W., Kan, X., Xu, D., … Fu, S. (2018). Peiminine protects against lipopolysaccharide-induced mastitis by inhibiting the AKT/NF-kappaB, ERK1/2 and p38 signaling pathways. International Journal of Molecular Sciences, 19(9), 2637-2637. https://doi.org/10.3390/ijms19092637
Guo, W., Liu, B., Yin, Y., Kan, X., Gong, Q., Li, Y., … Liu, J. (2019). Licochalcone A protects the blood-milk barrier integrity and relieves the inflammatory response in LPS-induced mastitis. Frontiers in Immunology, 10, 287. https://doi.org/10.3389/fimmu.2019.00287
Harikrishnan, H., Jantan, I., Haque, M. A., & Kumolosasi, E. (2018). Anti-inflammatory effects of hypophyllanthin and niranthin through downregulation of NF-kappaB/MAPKs/PI3K-Akt signaling pathways. Inflammation, 41(3), 984-995. https://doi.org/10.1007/s10753-018-0752-4
He, X., Liu, W., Shi, M., Yang, Z., Zhang, X., & Gong, P. (2017). Docosahexaenoic acid attenuates LPS-stimulated inflammatory response by regulating the PPARγ/NF-κB pathways in primary bovine mammary epithelial cells. Research in Veterinary Science, 112, 7-12. https://doi.org/10.1016/j.rvsc.2016.12.011
Isbister, C. (1952). Acute mastitis: A study of 28 cases. Medical Journal of Australia, 2(23), 801. https://doi.org/10.5694/j.1326-5377.1952.tb94809.x
John, G. C., Nduati, R. W., Mbori-Ngacha, D. A., Richardson, B. A., Panteleeff, D., Mwatha, A., … Kreiss, J. K. (2001). Correlates of mother-to-child human immunodeficiency virus type 1 (HIV-1) transmission: Association with maternal plasma HIV-1 RNA load, genital HIV-1 DNA shedding, and breast infections. Journal of Infectious Diseases, 183(2), 206-212. https://doi.org/10.1086/317918
Kim, D.-C., Quang, T., Oh, H., & Kim, Y.-C. (2018). Correction: Dong-Cheol Kim. et al Steppogenin Isolated from Cudrania tricuspidata Shows Antineuroinflammatory Effects via NF-κB and MAPK Pathways in LPS-Stimulated BV2 and Primary Rat Microglial Cells. Molecules 2017, 22, 2130. Molecules, 23(6), 1244. https://doi.org/10.3390/molecules23061244
Lawrence, R. A. (1980). Breastfeeding: A guide for the medical profession, Vol. 31 (pp. 205-206). New Jersey, NJ: wiley.
Li, Y., Xia, J., Jiang, N., Xian, Y., Zhang, X. J. B. (2017). Corin protects H2O2-induced apoptosis through PI3K/AKT and NF-κB pathway in cardiomyocytes. Biomedicine & Pharmacotherapy, 97, 594-599.
Long, J., Song, J., Zhong, L. I., Liao, Y., Liu, L., & Li, X. (2019). Palmatine: A review of its pharmacology, toxicity and pharmacokinetics. Biochimie, 162, 176-184.
Lopes, P. C. (2016). LPS and neuroinflammation: A matter of timing. Inflammopharmacology, 24(5), 291-293. https://doi.org/10.1007/s10787-016-0283-2
Lumin, Y. U., Shang, F., Chen, X., Ni, J., Li, Y. U., Zhang, M., … Xue, T. (2018). The anti-biofilm effect of silver-nanoparticle-decorated quercetin nanoparticles on a multi-drug resistant Escherichia coli strain isolated from a dairy cow with mastitis. PeerJ. 6, e5711.
Matheson, I., Aursnes, I., Horgen, M., Aabø, Ø., & Melby, K. (1988).Bacteriological findings and clinical symptoms. Acta Obstetricia et Gynecologica Scandinavica, 67(8), 723-726. https://doi.org/10.3109/00016349809004296
Medzhitov, R. J. N. (2008). Origin and physiological roles of inflammation. Nature, 454(7203), 428-435.
Ogle, K. S., Davis, S. (1988). Mastitis in lactating women. The Journal of Family Practice, 26(2), 139-144.
Qi, T., Li, H., & Li, S. (2017). Indirubin improves antioxidant and anti-inflammatory functions in lipopolysaccharide-challenged mice. Oncotarget, 8(22), 36658-36663. https://doi.org/10.18632/oncotarget.17560
Ramudo, L., Manso, M. A., Vicente, S., & Dios, I. D. (2005). Pro- and anti-inflammatory response of acinar cells during acute pancreatitis. Effect of N-acetyl cysteine. Cytokine, 32(3-4), 125-131.
Rosa, S. I. G., Riossantos, F., & Balogun, S. O. (2016). Vitexin reduces neutrophil migration to inflammatory focus by down-regulating pro-inflammatory mediators via inhibition of P38, ERK1/2 and JNK pathway. Phytomedicine, 23(1), 9-17. https://doi.org/10.1016/j.phymed.2015.11.003
Schönbach, C. (2013). Pro-inflammatory mediators. New York, NY: Springer.
Somensi, N., Rabelo, T. K., Guimaraes, A. G., Quintans-Junior, L. J., de Souza Araujo, A. A., Moreira, J. C. F., & Gelain, D. P. (2019). Carvacrol suppresses LPS-induced pro-inflammatory activation in RAW 264.7 macrophages through ERK1/2 and NF-kB pathway. International Immunopharmacology, 75, 105743. https://doi.org/10.1016/j.intimp.2019.105743
Tang, F., Wang, Y., Hemmings, B. A., Rüegg, C., Xue, G. (2000). PKB/Akt-dependent regulation of inflammation in cancer. S1044579X17301177.
Torres-Ramos, M. A., Cuevas, E., Tobon-Velasco, J. C. J. C., & Targets, N. D. D. (2014). Receptor for AGEs (RAGE) as mediator of NF-kB pathway activation in neuroinflammation and oxidative stress. CNS & Neurological Disorders Drug Targets, 13(9), 1615-1626.
Wang, H., Huang, W., Liang, M., Shi, Y., Zhang, C., Li, Q., … Shen, Z. (2018). (+)-JQ1 attenuated LPS-induced microglial inflammation via MAPK/NFkappaB signaling. Cell & Bioscience, 8, 60. https://doi.org/10.1186/s13578-018-0258-7
Wang, L., Li, X., & Wang, Y. (2018). GSK3beta inhibition attenuates LPS-induced IL-6 expression in porcine adipocytes. Scientific Reports, 8(1), 15967. https://doi.org/10.1038/s41598-018-34186-0
Wang, W., Weng, J., Lei, Y. U., Huang, Q., Jiang, Y., & Guo, X. (2018). Role of TLR4-p38 MAPK-Hsp27 signal pathway in LPS-induced pulmonary epithelial hyperpermeability. BMC Pulmonary Medicine, 18(1), 178.
Xue, T., Yu, L., Shang, F., Li, W., Zhang, M., Ni, J., & Chen, X. (2016). Short communication: The role of autoinducer 2 (AI-2) on antibiotic resistance regulation in an Escherichia coli strain isolated from a dairy cow with mastitis. Journal of Dairy Science, 99(6):4693-4698.
Yan, B., Wang, D., Dong, S., Cheng, Z., Na, L., Sang, M., … Yan, Z. (2017). Palmatine inhibits TRIF-dependent NF-κB pathway against inflammation induced by LPS in goat endometrial epithelial cells. International Immunopharmacology, 45, 194-200. https://doi.org/10.1016/j.intimp.2017.02.004
Yang, C., Liu, P., Wang, S., Zhao, G., Zhang, T., Guo, S., … Deng, G. (2018). Shikonin exerts anti-inflammatory effects in LPS-induced mastitis by inhibiting NF-kappaB signaling pathway. Biochemical and Biophysical Research Communications, 505(1), 1-6. https://doi.org/10.1016/j.bbrc.2018.08.198
Zha, L., Chen, J., Sun, S., Mao, L., Chu, X., Deng, H., … Cao, W. (2014). Soyasaponins can blunt inflammation by inhibiting the reactive oxygen species-mediated activation of PI3K/Akt/NF-kB pathway. PLoS One, 9(9), e107655. https://doi.org/10.1371/journal.pone.0107655

Auteurs

He Ma (H)

College of Veterinary Medicine, Jilin University, Changchun, China.

Yufei Zhang (Y)

College of Veterinary Medicine, Jilin University, Changchun, China.

Jiaxin Wang (J)

College of Veterinary Medicine, Jilin University, Changchun, China.

Wenjin Guo (W)

College of Veterinary Medicine, Jilin University, Changchun, China.

Guiqiu Hu (G)

College of Veterinary Medicine, Jilin University, Changchun, China.

Shengnan Xie (S)

College of Veterinary Medicine, Jilin University, Changchun, China.

Zhanqing Yang (Z)

College of Veterinary Medicine, Jilin University, Changchun, China.

Juxiong Liu (J)

College of Veterinary Medicine, Jilin University, Changchun, China.

Shoupeng Fu (S)

College of Veterinary Medicine, Jilin University, Changchun, China.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH