Induction of tenogenic differentiation of equine adipose-derived mesenchymal stem cells by platelet-derived growth factor-BB and growth differentiation factor-6.


Journal

Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234

Informations de publication

Date de publication:
Sep 2020
Historique:
received: 27 06 2020
accepted: 27 08 2020
revised: 15 08 2020
pubmed: 3 9 2020
medline: 4 6 2021
entrez: 3 9 2020
Statut: ppublish

Résumé

Managing tendon healing process is complicated mainly due to the limited regeneration capacity of tendon tissue. Mesenchymal stem cells (MSCs) have potential applications in regenerative medicine and have been considered for tendon repair and regeneration. This study aimed to evaluate the capacity of equine adipose tissue-derived cells (eASCs) to differentiate into tenocytes in response to platelet-derived growth factor-BB (PDGF-BB) and growth differentiation factor-6 (GDF-6) in vitro. Frozen characterized eASCS of 3 mares were thawed and the cells were expanded in basic culture medium (DMEM supplemented with 10% FBS). The cells at passage 5 were treated for 14 days in different conditions including: (1) control group in basic culture medium (CM), (2) induction medium as IM (CM containing L-prolin, and ascorbic acid (AA)) supplemented with PDGF-BB (20 ng/ml), (3) IM supplemented with GDF-6 (20 ng/ml), and (4) IM supplemented with PDGF-BB and GDF-6. At the end of culture period (14th day), tenogenic differentiation was evaluated. Sirius Red staining was used to assess collagen production, and H&E was used for assessing cell morphology. mRNA levels of collagen type 1 (colI), scleraxis (SCX), and Mohawk (MKX), as tenogenic markers, were analyzed using real-time reverse-transcription polymerase chain reaction (qPCR). H&E staining showed a stretching and spindle shape (tenocyte-like) cells in all treated groups compared to unchanged from of cells in control groups. Also, Sirius red staining data showed a significant increase in collagen production in all treated groups compared with the control group. MKX expression was significantly increased in PDGF-BB and mixed groups and COLI expression was significantly increased only in PDGF-BB group. In conclusion, our results showed that PDGF-BB and GDF-6 combination could induce tenogenic differentiation in eASCs. These in vitro findings could be useful for cell therapy in equine regenerative medicine.

Identifiants

pubmed: 32875433
doi: 10.1007/s11033-020-05742-7
pii: 10.1007/s11033-020-05742-7
doi:

Substances chimiques

Basic Helix-Loop-Helix Transcription Factors 0
Collagen Type I 0
Growth Differentiation Factor 6 0
Homeodomain Proteins 0
Becaplermin 1B56C968OA

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6855-6862

Références

Bagnaninchi PO, Yang Y, El Haj AJ, Maffulli N (2007) Tissue engineering for tendon repair. Br J Sports Med. https://doi.org/10.1136/bjsm.2006.030643
doi: 10.1136/bjsm.2006.030643 pubmed: 17062654
Favata M, Beredjiklian PK, Zgonis MH, Beason DP, Crombleholme TM, Jawad AF et al (2006) Regenerative properties of fetal sheep tendon are not adversely affected by transplantation into an adult environment. J Orthop Res 24(11):2124–32. https://doi.org/10.1002/jor.20271
doi: 10.1002/jor.20271 pubmed: 16944473
Awad HA, Butler DL, Boivin GP, Smith FNL, Malaviya P, Huibregtse B et al (1999) Autologous mesenchymal stem cell-mediated repair of tendon. Tissue Eng 5(3):267–277. https://doi.org/10.1089/ten.1999.5.267
doi: 10.1089/ten.1999.5.267 pubmed: 10434073
Lui PPY, Chan KM (2011) Tendon-derived stem cells (TDSCs): from basic science to potential roles in tendon pathology and tissue engineering applications. Stem Cell Rev Rep. https://doi.org/10.1007/s12015-011-9276-0
doi: 10.1007/s12015-011-9276-0 pubmed: 21611803
Tei K, Matsumoto T, Mifune Y, Ishida K, Sasaki K, Shoji T et al (2008) Administrations of peripheral blood CD34-positive cells contribute to medial collateral ligament healing via vasculogenesis. Stem Cells 26(3):819–830. https://doi.org/10.1634/stemcells.2007-0671
doi: 10.1634/stemcells.2007-0671 pubmed: 18192236
Uysal CA, Tobita M, Hyakusoku H, Mizuno H (2012) Adipose-derived stem cells enhance primary tendon repair: biomechanical and immunohistochemical evaluation. J Plast Reconstr Aesthetic Surg 65(12):1712–1719. https://doi.org/10.1016/j.bjps.2012.06.011
doi: 10.1016/j.bjps.2012.06.011
Liu G, Zhou H, Li Y, Li G, Cui L, Liu W et al (2008) Evaluation of the viability and osteogenic differentiation of cryopreserved human adipose-derived stem cells. Cryobiology 57(1):18–24. https://doi.org/10.1016/j.cryobiol.2008.04.002
doi: 10.1016/j.cryobiol.2008.04.002 pubmed: 18495102
Kim YS, Lee HJ, Ok JH, Park JS, Kim DW (2013) Survivorship of implanted bone marrow-derived mesenchymal stem cells in acute rotator cuff tear. J Shoulder Elb Surg 22(8):1037–1045. https://doi.org/10.1016/j.jse.2012.11.005
doi: 10.1016/j.jse.2012.11.005
Gonçalves AI, Rodrigues MT, Lee SJ, Atala A, Yoo JJ, Reis RL et al (2013) Understanding the role of growth factors in modulating stem cell tenogenesis. PLoS ONE 8(12):e83734. https://doi.org/10.1371/journal.pone.0083734
doi: 10.1371/journal.pone.0083734 pubmed: 24386267 pmcid: 3875481
Yang G, Rothrauff BB, Lin H, Gottardi R, Alexander PG, Tuan RS (2013) Enhancement of tenogenic differentiation of human adipose stem cells by tendon-derived extracellular matrix. Biomaterials 34(37):9295–9306. https://doi.org/10.1016/j.biomaterials.2013.08.054
doi: 10.1016/j.biomaterials.2013.08.054 pubmed: 24044998 pmcid: 3951997
Raabe O, Shell K, Fietz D, Freitag C, Ohrndorf A, Christ HJ et al (2013) Tenogenic differentiation of equine adipose-tissue-derived stem cells under the influence of tensile strain, growth differentiation factors and various oxygen tensions. Cell Tissue Res 352(3):509–521. https://doi.org/10.1007/s00441-013-1574-1
doi: 10.1007/s00441-013-1574-1 pubmed: 23430474
Koch TG, Berg LC, Betts DH (2009) Current and future regenerative medicine-principles, concepts, and therapeutic use of stem cell therapy and tissue engineering in equine medicine. Can Vet J 50:155–65
pubmed: 19412395 pmcid: 2629419
Kuhbier JW, Weyand B, Radtke C, Vogt PM, Kasper C, Reimers K (2010) Isolation, characterization, differentiation, and application of adipose-derived stem cells. Adv Biochem Eng Biotechnol 123:55–105. https://doi.org/10.1007/10_2009_24
doi: 10.1007/10_2009_24 pubmed: 20091288
Pikuła M, Marek-Trzonkowska N, Wardowska A, Renkielska A, Trzonkowski P (2013) Adipose tissue-derived stem cells in clinical applications. Exp Opin Biol Ther 13:1357–1370
doi: 10.1517/14712598.2013.823153
Wolfman NM, Hattersley G, Cox K, Celeste AJ, Nelson R, Yamaji N et al (1997) Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-β gene family. J Clin Invest 100(2):321–330
doi: 10.1172/JCI119537
Brent AE, Schweitzer R, Tabin CJ (2003) A somitic compartment of tendon progenitors. Cell 113(2):235–248. https://doi.org/10.1016/S0092-8674(03)00268-X
doi: 10.1016/S0092-8674(03)00268-X pubmed: 12705871
Wang QW, Chen ZL, Piao YJ (2005) Mesenchymal stem cells differentiate into tenocytes by bone morphogenetic protein (BMP) 12 gene transfer. J Biosci Bioeng 100(4):418–422. https://doi.org/10.1263/jbb.100.418
doi: 10.1263/jbb.100.418 pubmed: 16310731
Hankemeier S, Keus M, Zeichen J, Jagodzinski M, Barkhausen T, Bosch U et al (2005) Modulation of proliferation and differentiation of human bone marrow stromal cells by fibroblast growth factor 2: potential implications for tissue engineering of tendons and ligaments. Tissue Eng 11(1–2):41–49. https://doi.org/10.1089/ten.2005.11.41
doi: 10.1089/ten.2005.11.41 pubmed: 15738660
Sieber C, Kopf J, Hiepen C, Knaus P (2009) Recent advances in BMP receptor signaling. Cytokine and Growth Factor Reviews. 20:343–55. https://doi.org/10.1016/j.cytogfr.2009.10.007
doi: 10.1016/j.cytogfr.2009.10.007 pubmed: 19897402
Liu J, Tao X, Chen L, Han W, Zhou Y, Tang K (2015) CTGF positively regulates BMP12 induced tenogenic differentiation of tendon stem cells and signaling. Cell Physiol Biochem 35(5):1831–1845. https://doi.org/10.1159/000373994
doi: 10.1159/000373994 pubmed: 25833297
Haddad-Weber M, Prager P, Kunz M, Seefried L, Jakob F, Murray MM et al (2010) BMP12 and BMP13 gene transfer induce ligamentogenic differentiation in mesenchymal progenitor and anterior cruciate ligament cells. Cytotherapy 12(4):505–13. https://doi.org/10.3109/14653241003709652
doi: 10.3109/14653241003709652 pubmed: 20334610 pmcid: 3580941
Aspenberg P, Forslund C (1997) Enhanced tendon healing with GDF 5 and 6. Acta Orthop Scand 70(1):51–54. https://doi.org/10.3109/17453679909000958
doi: 10.3109/17453679909000958
Wong YP, Fu SC, Cheuk YC, Lee KM, Wong MWN, Chan KM (2005) Bone morphogenetic protein 13 stimulates cell proliferation and production of collagen in human patellar tendon fibroblasts. Acta Orthop 76(3):421–427. https://doi.org/10.1080/17453670510041330
doi: 10.1080/17453670510041330 pubmed: 16156473
Ducy P, Karsenty G (2005) The family of bone morphogenetic proteins. Kidney Int 57(6):2207–2214. https://doi.org/10.1046/j.1523-1755.2000.00081.x
doi: 10.1046/j.1523-1755.2000.00081.x
Mehanna RA, Nabil I, Attia N, Bary AA, Razek KA, Ahmed TAE et al (2015) The effect of bone marrow-derived mesenchymal stem cells and their conditioned media topically delivered in fibrin glue on chronic wound healing in rats. Biomed Res Int. https://doi.org/10.1155/2015/846062
doi: 10.1155/2015/846062 pubmed: 26236740 pmcid: 4508387
Randelli P, Randelli F, Ragone V, Menon A, D’Ambrosi R, Cucchi D et al (2014) Regenerative medicine in rotator cuff injuries. BioMed Res Int. https://doi.org/10.1155/2014/129515
doi: 10.1155/2014/129515 pubmed: 25184132 pmcid: 4145545
Lepistö J, Laato M, Niinikoski J, Lundberg C, Gerdin B, Heldin CH (1992) Effects of homodimeric isoforms of platelet-derived growth factor (PDGF-AA and PDGF-BB) on wound healing in rat. J Surg Res 53(6):596–601. https://doi.org/10.1016/0022-4804(92)90260-7
doi: 10.1016/0022-4804(92)90260-7 pubmed: 1494293
Oliva F, Via AG, Maffulli N (2011) Role of growth factors in rotator cuff healing. Sports Med Arthrosc Rev. https://doi.org/10.1097/JSA.0b013e3182250c78
doi: 10.1097/JSA.0b013e3182250c78 pubmed: 21822107
Nedeau AE, Bauer RJ, Gallagher K, Chen H, Liu ZJ, Velazquez OC (2008) A CXCL5- and bFGF-dependent effect of PDGF-B-activated fibroblasts in promoting trafficking and differentiation of bone marrow-derived mesenchymal stem cells. Exp Cell Res 314(11–12):2176–2186. https://doi.org/10.1016/j.yexcr.2008.04.007
doi: 10.1016/j.yexcr.2008.04.007 pubmed: 18570917 pmcid: 2638214
Yoshikawa Y, Abrahamsson SO (2001) Dose-related cellular effects of platelet-derived growth factor-BB differ in various types of rabbit tendons in vitro. Acta Orthop Scand 72(3):287–292. https://doi.org/10.1080/00016470152846646
doi: 10.1080/00016470152846646 pubmed: 11480607
Alipour F, Parham A, Kazemi Mehrjerdi H, Dehghani H (2015) Equine adipose-derived mesenchymal stem cells: phenotype and growth characteristics, gene expression profile and differentiation potentials. Cell J 16(4):456–465
pubmed: 25685736 pmcid: 4297484
Yin Z, Guo J, Wu T, Chen X, Xu L, Lin S, Sun Y, Chan K, Ouyang H, Li G (2016) Stepwise differentiation of mesenchymal stem cells augments tendon-like tissue formation and defect repair in vivo. Stem cells translational medicine 5(8):1106–1116. https://doi.org/10.5966/sctm.2015-0215
doi: 10.5966/sctm.2015-0215 pubmed: 27280798 pmcid: 4954446
Naderi H, Matin M, Bahrami A (2011) Critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems. J Biomater Appl 26(4):383–417. https://doi.org/10.1177/0885328211408946‎
doi: 10.1177/0885328211408946‎ pubmed: 21926148
Naderi H, Bahrami A, Bidkhori H, Mirahmadi M, Ahmadiankia N (2015) Strategies to improve homing of mesenchymal stem cells for greater efficacy in stem cell therapy. Cell Biol Int 39(1):23–34. https://doi.org/10.1002/cbin.10378
doi: 10.1002/cbin.10378
Alves A, Stewart AA, Dudhia J, Kasashima Y, Goodship AE, Smith RK (2011) Cell-based therapies for tendon and ligament injuries. Vet Clin 27(2):315–333. https://doi.org/10.1016/j.cveq.2011.06.001
doi: 10.1016/j.cveq.2011.06.001
Qi F, Deng Z, Ma Y, Wang S, Liu C, Lyu F, Wang T, Zheng Q (2020) From the perspective of embryonic tendon development: various cells applied to tendon tissue engineering. Ann Transl Med. https://doi.org/10.21037/atm.2019.12.78
doi: 10.21037/atm.2019.12.78 pubmed: 32953729 pmcid: 7396749
Yu Y, Zhou Y, Cheng T, Lu X, Yu K, Zhou Y, Hong J, Chen Y (2016) Hypoxia enhances tenocyte differentiation of adipose-derived mesenchymal stem cells by inducing hypoxia‐inducible factor‐1α in a co‐culture system. Cell Prolif 49(2):173–184. https://doi.org/10.1111/cpr.12250
doi: 10.1111/cpr.12250 pubmed: 27021233 pmcid: 6496829
Norelli JB, Plaza DP, Stal DN, Varghese AM, Liang H, Grande DA (2018) Tenogenically differentiated adipose-derived stem cells are effective in Achilles tendon repair in vivo. J Tissue Eng. https://doi.org/10.1177/2041731418811183
doi: 10.1177/2041731418811183 pubmed: 30542597 pmcid: 6236638
Ho JO, Sawadkar P, Mudera V (2014) A review on the use of cell therapy in the treatment of tendon disease and injuries. J Tissue Eng 5:2041731414549678. https://doi.org/10.1177/2041731414549678
doi: 10.1177/2041731414549678 pubmed: 25383170 pmcid: 4221986
Jiang D, Gao P, Zhang Y, Yang S (2016) Combined effects of engineered tendon matrix and GDF-6 on bone marrow mesenchymal stem cell-based tendon regeneration. Biotechnol Lett 38(5):885–892. https://doi.org/10.1007/s10529-016-2037-z
doi: 10.1007/s10529-016-2037-z pubmed: 26956234
Dale T, Mazher Sh, Webb W, Zhou J, Maffulli N, Chen G, El Haj A, Forsyth N (2018) Tenogenic differentiation of human embryonic stem cells. Tissue Eng Part A 24(5–6):361–368. https://doi.org/10.1089/clo.2006.8.16
doi: 10.1089/clo.2006.8.16 pubmed: 28548630
Nourissat G, Berenbaum F, Duprez D (2015) Tendon injury: from biology to tendon repair. Nat Rev Rheumatol 11:223–233. https://doi.org/10.1038/nrrheum.2015.26
doi: 10.1038/nrrheum.2015.26 pubmed: 25734975
Shojaee A, Parham A, Ejeian F, Esfahani M (2019) Equine adipose mesenchymal stem cells (eq-ASCs) appear to have higher potential for migration and musculoskeletal differentiation. Res Vet Sci 125:235–243. https://doi.org/10.1016/j.rvsc.2019.06.015
doi: 10.1016/j.rvsc.2019.06.015 pubmed: 31310927
Wei CH, Ming N, Rui Y, Zhang K, Zhang Q, Xu L, Chan K, Gang LI, Wang Y (2013) Effect of growth and differentiation factor 6 on the tenogenic differentiation of bone marrow-derived mesenchymal stem cells. Chin Med J. https://doi.org/10.3760/cma.j.issn.0366-6999.20123351
doi: 10.3760/cma.j.issn.0366-6999.20123351 pubmed: 24342336
Mohanty N, Gulati BR, Kumar R, Gera S, Kumar P, Somasundaram RK et al (2014) Immunophenotypic characterization and tenogenic differentiation of mesenchymal stromal cells isolated from equine umbilical cord blood. Vitr Cell Dev Biol 50(6):53848. https://doi.org/10.1007/s11626-013-9729-7
doi: 10.1007/s11626-013-9729-7
Matsukawa T, Otabe K, Muneta T, Inui M, Nakahara H, Sekiya I et al (2014) Transcription factor Mohawk controls tenogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo. J Orthop Res 33(1):1–8. https://doi.org/10.1002/jor.22750
Stanco D, Caprara Ch, Ciardelli G, Mariotta L, Gola M, Minonzio G, Soldati G (2019) Tenogenic differentiation protocol in xenogenic-free media enhances tendon-related marker expression in ASCs. PLoS ONE 14(2):e0212192. https://doi.org/10.1371/journal.pone.0212192
doi: 10.1371/journal.pone.0212192 pubmed: 30753235 pmcid: 6372228
Falcon N, Riley G, Saeed A (2019) Induction of tendon-specific markers in adipose-derived stem cells in serum-free culture conditions. Tissue Eng Part C 25(7):389–400. https://doi.org/10.1089/ten.tec.2019.0080
doi: 10.1089/ten.tec.2019.0080
Rajpar I, Barrett JG (2019) Optimizing growth factor induction of tenogenesis in three-dimensional culture of mesenchymal stem cells. J Tissue Eng. https://doi.org/10.1177/2041731419848776
doi: 10.1177/2041731419848776 pubmed: 31205672 pmcid: 6535701

Auteurs

Shabnam Javanshir (S)

Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.

Fatemeh Younesi Soltani (F)

Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.

Gholamreza Dowlati (G)

Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.

Abbas Parham (A)

Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran. parham@um.ac.ir.
Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Iran. parham@um.ac.ir.

Hojjat Naderi-Meshkin (H)

Stem Cells and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH